Approaches to Determining the Residual Life of the Main Components of the Helicopter, Taking Into Account the Flight Profiles Performed
https://doi.org/10.21869/2223-1536-2023-13-1-61-72
Abstract
The purpose of research is development of an alternative approach to determining the residual life of the product, based on the conversion of the energy of deformed power elements of the airframe structure into the consumption of an equivalent product resource through a monitoring system based on fiber-optic strain sensors.
Methods. The analysis of existing methods for assessing the technical condition of the main components of aircraft products and determining their residual life based on information about the technical condition, on the basis of which the synthesis of the algorithm for determining the residual life of the main components of the helicopter, taking into account the technical condition, was carried out.
Results. In the course of the study, the existing methods of assessing the technical condition of the product were classified. The shortcomings in the existing concept of determining the residual resource are indicated, the main of which is the lack of the possibility of predicting the residual resource based on the technical condition of the object (operational history). An alternative approach to determining the residual life of the main components of the helicopter is proposed, with an explanation of the approximate methodology for assessing the technical condition of the main components and the product as a whole, the composition and description of the main stages of the implementation of this approach. The composition and the sensitive element in the control system of the current technical condition of the main components of the product are determined. A fiber-optic sensor with a Bragg grid (fiber-optic pressure sensor ВОДД-1.XXX ПИКВ.401143.003 ТУ) was selected as a sensitive element for the implementation of the monitoring system.
Conclusion. The proposed approach to determining the residual life of the main components of the helicopter combines high reliability indicators, which is due to the fixation of the operation history of a particular helicopter, the simplicity of determining the residual life of the product and the absence of the need for special measuring instruments in operating companies.
About the Authors
I. I. SizonovRussian Federation
Ivan I. Sizonov, Student of the Department of Space Instrumentation and Communications,
50 Let Oktyabrya Str. 94, Kursk 305040
A. S. Barabushka
Russian Federation
Alexander S. Barabushka, Deputy General Designer,
15 Aviakonstruktora Str., Moscow 109431
I. E. Mukhin
Russian Federation
Ivan E. Mukhin, Dr. of Sci. (Engineering), Professor, Department of Space Instrumentation and Communications,
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. GOST 27.002-2015. Nadezhnost' v tekhnike. Terminy i opredeleniya [State Standard 27.002-2015. Reliability in technology. Terms and definitions]. Moscow, Standartinform Publ., 2016. 29 p.
2. Raschet ostatochnogo resursa tekhnicheskikh ustroistv (oborudovaniya) [Calculation of the residual resource of technical devices (equipment)]. Available at: https://www.ruspromexpert.ru/uslugi/raschet_residual_resursa_tu/. (accessed 27.02.2023)
3. Dubrovin V. I., Klimenko V. A. Metody otsenki ostatochnogo resursa izdelii. Obzor [Methods of estimating the residual resource of the products. Review]. Matematichnі mashini і sistemi = Mathematical Machines and Systems, 2010, no. 4, pp. 162–168.
4. Chen H. M., Vidakovich B., Mavris N. D. Multiscale forecasting method using ar-max models. Technological Forecasting and Social Changes, 2004, no. 1, pp. 34–39.
5. Bolotin V. V. Prognozirovanie resursa mashin i konstruktsii [Forecasting the resource of machines and structures]. Moscow, Mechanical engineering Publ., 1984. 312 p.
6. Erpalov A.V., Schaefer L. A., Richter E. E., Taranenko P. A. Ustalostnye ispytaniya materialov i konstruktsii s ispol'zovaniem sovremennogo oborudovaniya [Fatigue tests of materials and structures using modern equipment]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Mashinostroenie = Bulletin of the South Ural State University. Series: Mechanical Engineering, 2015, vol. 15, no. 2, pp. 70–80.
7. Belodedenko S. V. Prognozirovanie povrezhdeniya i zhivuchesti elementov konstruktsii s ispol'zovaniem modelei nakopleniya povrezhdenii [Forecasting damage and survivability of structural elements using damage accumulation models]. Zavodskaya laboratoriya. Diagnostika Materialov = Factory Laboratory. Diagnostics of Materials. 2010, vol. 76, no. 1, pp. 49–52.
8. Agamirov L. V., Agamirov V. L., Vestyak V. A. Algoritm otsenki parametrov funktsii raspredeleniya predela vynoslivosti pri ustalostnykh ispytaniyakh [Algorithm for estimating the parameters of the distribution function of the endurance limit during fatigue tests]. Vestnik Moskovskogo aviatsionnogo instituta = Bulletin of the Moscow Aviation Institute, 2013, vol. 20, no. 5, pp. 105–110.
9. Nassif N. S., Ibatullin N. D. Kinetika ustalostnogo razrusheniya tverdykh splavov [Kinetics of fatigue failure of hard alloys]. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Saratov State Technical University, 2012, no. 3, pp. 87– 93.
10. Boyko T. S. Formirovanie tipovykh profilei poletov samoleta transport-noi kategorii s uchetom istorii ekspluatatsii parka [Formation of typical flight profiles of a transport category aircraft taking into account the history of fleet operation]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya = Aviation and Space Technology and Technology, 2018, no. 6 (150), pp. 67– 74.
11. Feigenbaum Yu. M., Sokolov Yu. S. Analiz sovremennogo sostoyaniya i perspektiv razvitiya otechestvennoi sistemy monitoringa ekspluatatsii silovoi konstruktsii grazhdanskikh VS [Analysis of the current state and prospects of development of the domestic system for monitoring the operation of the power structure of civil aircraft]. Nauchnyi vestnik gosudarstvennogo nauchno-issledovatel'skogo instituta grazhdanskoi aviatsii = Scientific Bulletin of the State Research Institute of Civil Aviation, 2015, no. 7 (318), pp. 14–23.
12. Kotelkin A. V., Roberov I. G., Matveev D. B., Lednev I. S. Opredelenie ostatochnogo resursa i metody povysheniya urovnya bezopasno-sti pri ekspluatirovanii konstruktsionnykh materialov v aviatsii [Determination of the residual resource and methods of increasing the level of safety in the operation of structural materials in aviation]. Sovremennye Materialy, Tekhnika i Tekhnologii = Modern Materials, Equipment and Technologies, 2016, no. 1 (4), pp. 104–113.
13. Brostilova T. Yu., Brostilov S. A., Murashkina T. I. Volokonno-opticheskii datchik deformatsii [Fiber-optic strain sensor]. Nadezhnost' i Kachestvo Slozhnykh Sistem = Reliability and Quality of Complex Systems, 2013, no. 1, pp. 93–99.
14. Suryandi A. A., Sarma N., Mohammed A., Pisapati V., Djurovich S. Fiber-optic sensor of the Bragg grid for monitoring and testing of electric machines: current state and prospects. Machines, 2022, no. 10, pp. 257–279.
15. Badeeva E. A. Nauchnaya kontseptsiya proektirovaniya volokonno-opticheskikh datchikov davleniya s otkrytym kanalom dlya raketno-kosmicheskoi i aviatsionnoi tekhniki [Scientific concept of designing fiber-optic pressure sensors with an open channel for rocket, space and aviation technology]. Izvestiya Vysshikh Uchebnykh Zavedenii. Povolozhskii Region = Proceedings of Higher Education Institutions. Povolozhsky Region, 2016, no. 4 (40), pp. 102–113.
16. Ovchinnikov I. N., Ermishkin V. A. Dostovernost' rezul'tatov ispytanii na vibratsiyu. Diagnostika i prognozirovanie ustalostnogo razrusheniya [Reliability of vibration test results. Diagnostics and prediction of fatigue failure]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. S. P. Koroleva = Bulletin of Samara State Aerospace University named after S. P. Korolev, 2012, no. 3 (34), pp. 377–384.
17. Chto takoe tenzodatchik [What is a load cell]. Available at: https://odinelectric.ru/kipia/chto-takoe-tenzodatchik. (accessed 27.12.2022)
18. Kak rabotaet emkostnoi datchik [How the capacitive sensor works]. Available at: https://teplobloknn.ru/avtomatizaciya/kak-rabotayut-emkostnye-datchiki.html. (accessed 27.12.2022)
19. Kuzin S. A., Lviv P. A., Lviv A. A., Svetlov M. S. Povyshenie tochnosti emkostnykh datchikov davleniya dlya aviakosmicheskoi tekhniki [Improving the accuracy of capacitive pressure sensors for aerospace equipment]. Izvestiya Yuzhnogo Federal'nogo Universiteta. Tekhnicheskie Nauki = Proceedings of Southern Federal University. Technical Sciences, 2017, no. 8, pp. 29–42.
20. Pritichandra D. M., Shida K. A. Simple Interface Circuit to Measure Very Small Capacitance Changes in Capacitive Sensors. IEEE Transactions on Instrumenta-tion and Measurement, 2001, no. 50 (6), pp. 1583–1586.
Review
For citations:
Sizonov I.I., Barabushka A.S., Mukhin I.E. Approaches to Determining the Residual Life of the Main Components of the Helicopter, Taking Into Account the Flight Profiles Performed. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2023;13(1):61-72. (In Russ.) https://doi.org/10.21869/2223-1536-2023-13-1-61-72