Analysis of the Functional Capabilities of Technical tools for Measuring Aircraft Mechanical Parameters
https://doi.org/10.21869/2223-1536-2023-13-1-73-92
Abstract
The purpose of research is to analyze the functionality of classical and advanced sensors for controlling the mechanical parameters of aircraft using the example of strain and vibration sensors to identify their current areas of development.
Methods. Research methods are based on the concepts of the theory of sensory systems, the theory of diagnostics and forecasting of the technical condition of aircraft. Methods of multi-criteria analysis, parametric and structural synthesis are used. The principles of operation, as well as the functionality of the main classical sensors used in aircraft to control the parameters of deformation and vibration, are analyzed. A critical assessment of the possibilities of using the analyzed sensors for implementation in various tasks of aviation diagnostics of mechanical parameters has been made.
Results. It has been established that the impact of flight loads on the airframe and critical components of aircraft is accompanied by the appearance of hidden deformations in the form of mechanical stresses, which are divided into two components: normal and tangential. Analytical dependencies are obtained for calculating the above quantities using fiber-optic sensors with distributed Bragg cells that convert the change in their own linear dimensions into a change in the reflected wavelength. A necessary condition for obtaining correct measurement results is the temperature compensation of the cells, which makes it possible to localize the places of deformations with an accuracy up to the location of a particular cell. The practical results of using alternative sensors for detecting hidden deformations (cracks) based on radio frequency identification methods in various frequency ranges are presented.
Conclusion. The development of the method for diagnosing stress-strain states of aircraft complex units is the use of frequency-Doppler fiber-optic sensors with a high signal-to-noise ratio and a spherical radiation pattern, which will allow developing technical means for monitoring the dynamics of internal deformations of controlled units in real time. As promising areas of research in the field of creating new sensors with new physical properties, fiber-optic Bragg sensors with an inclined grating should be considered.
About the Authors
I. E. MukhinRussian Federation
Ivan E. Mukhin, Professor of the Department of Space Instrumentation and Communication
Systems,
50 Let Oktyabrya Str. 94, Kursk 305040
D. S. Koptev
Russian Federation
Dmitry S. Koptev, Senior Lecturer of the Department of Space Instrumentation and Communication Systems,
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Mukhin I. E., Mukhin A. I., Mikhailov S. N., Koptev D. S. Metodologicheskie osnovy sinteza sistem diagnostiki tekhnicheskogo sostoyaniya kosmicheskikh i letatel'nykh apparatov [Methodological foundations of synthesis of diagnostic systems for the technical condition of spacecraft and aircraft]. Kursk, Southwest State University Publ., 2018. 211 p.
2. Mukhin I. E., Seleznev S. L., Koptev D. S. Napravleniya i prakticheskie rezul'taty sozdaniya metodov i sredstv diagnostiki, i prognostiki sostoyaniya aviatsionnogo kompleksa "chelovek – mashina" [Directions and practical results of creating methods and diagnostic tools, and prognostics of the state of the aviation complex "man – machine"]. Izvestiya YugoZapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2017, vol. 7, no. 3 (24), pp. 46–57.
3. Koptev D. S., Mukhin I. E. Strategiya razrabotki sistem diagnostiki i prognostiki tekhnicheskogo sostoyaniya perspektivnykh letatel'nykh apparatov [Strategy for the development of diagnostic systems and prognostics of the technical condition of promising aircraft]. Informatsionno-Izmeritel'nye i Upravlyayushchie Sistemy = Information-Measuring and Control Systems, 2019, vol. 17, no. 2, pp. 65–70.
4. Datchiki dlya izmereniya, kontrolya, diagnostiki i upravleniya fizicheskikh i tekhnologicheskikh protsessov [Sensors for measuring, monitoring, diagnostics and control of physical and technological processes]; ed. by A.V. Gorish. Moscow, Moscow State University of Forest Publ., 2012, vol. 1, book 1. 576 p.
5. Yanchich V. V., Panich A. E. Dvukhparametrovyi p'ezoelektricheskii datchik postupatel'nogo i uglovogo uskoreniya [Two-parameter piezoelectric sensor of translational and angular acceleration]. Izvestiya Yuzhnogo Federal'nogo Universiteta. Tekhnicheskie nauki = Proceedings of the Southern Federal University. Technical Sciences, 2016, no. 2, pp. 191– 199.
6. Hart S., Ren H., Wagner T., Leubner P., Mühlbauer M., Brüne C., Buhmann H., Molenkamp L. W., Yacoby A. Induced superconductivity in the quantum spin Hall edge. Nature Physics, 2014, vol. 10, pp. 638–643. https://doi.org/10.1038/nphys3036
7. Reddy H., Guler U., Kudyshev Zh., Kildishev A.V., Shalaev V. M., Boltasseva A. Temperature-dependent optical properties of plasmonic titanium nitride thin films. ACS Photonics, 2017, vol. 4, no. 6, pp. 1413–1420. https://doi.org/10.1021/acsphotonics.7b00127
8. Khakhanov V. I., Filippenko I. V. Osobennosti postroeniya sistem radiochastotnoi identifikatsii [Features of the construction of radio frequency identification systems]. Vostochno-Evropeiskii Zhurnal Peredovykh Tekhnologii = East European Journal of Advanced Technologies, 2008, no. 6/3 (36), pp. 9–12.
9. Butenko V. V., Bagdasaryan S. A., Kashchenko A. G., Kashchenko G. A., Semenov R. V. Vybor varianta sistemy radiochastotnoi identifikatsii na osnove modifitsirovannogo metoda analiza ierarkhii [Choosing a variant of the radio frequency identification system based on a modified method of hierarchy analysis]. Trudy Nauchno-Issledovatel'skogo Instituta Radio = Proceedings of the Scientific Research Institute of Radio, 2012, no. 4, pp. 4–9.
10. Butenko B. V., Bagdasaryan C. A., Kashchenko G. A., Nikolaev O. V., Semenov R. V. Radiochastotnaya identifikatsiya – perspektivnoe napravlenie razvitiya radioelektronnykh sistem [Radio frequency identification – a promising direction for the development of radioelectronic systems]. Trudy nauchno-issledovatel'skogo instituta radio = Proceedings of the Scientific Research Institute of Radio, 2010, no. 3, pp. 80–84.
11. Muthanna A., Paramonov A., Koucheryavy A., Prokopiev A. Comparison Of Protocols For Ubiquitous Wireless Sensor Network. 6th Intern. Congress on Ultra Modern Telecommunications and Control Systems and Workshops, ICUMT 2014. St. Petersburg, IEEE Computer Society, 2015, pp. 334–337.
12. Teltevskaya V., Zelenov V., Shustov N., Kulik V., Kirichek R., Makolkina M. Identification of the Internet of Things Devices with Augmented Reality Technologies. Telecom IT, 2017, vol. 5, is. 4, pp. 64–70.
13. Wu Hao-Ping. Intelligent Parking Management System Utilizing RFID. The ACM MobiSys 2019 on Rising Stars Forum – RisingStarsForum’19. New York, ACM Press Publ., 2019, pp. 37–41.
14. Zhai Yue, Guo Qiang, Min Hao. An Effective Velocity Detection Method for Moving UHF-RFID Tags. 2018 IEEE International Conference on RFID Technology & Application (RFID-TA). Macao, IEEE, 2018, pp. 1–5.
15. Kostrominov A. M., Tyulyandin O. N., Nikitin A. B., Vasilenko M. N., Osminin A. T. RFID-Based Navigation of Subway Trains. 2020 IEEE East-West Design & Test Symposium (EWDTS). Varna, IEEE Publ., 2020, pp. 1–6.
16. Unterhuber A. R., Iliev Stoyan, Biebl Erwin. Influence of the Vehicle Velocity on the Number of Reads in UHF RFID Scenarios. 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA). Pisa, IEEE Publ., 2019, pp. 421–426.
17. Jessie R. Balbin, Ramon G. Garcia, Flordeliza L. Valiente, Brian Christopher F. Aaron, Christopher John D. Celimen, Juan Carlos K. De Peralta, Joshua P. Despabiladeras. Vehicle identification system through the interoperability of an ultra high frequency radio frequency identification system and its database. 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). Manila, IEEE Publ., 2017, pp. 1–5.
18. Yerasov V. S., Yakovlev N. O., Nuzhny G. A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnykh materialov [Qualification tests and strength studies of aviation materials]. Aviatsionnye materialy i tekhnologii = Aviation Materials and Technologies, 2012, no. S, pp. 440–448.
19. Guo H., Xiao G., Mrad N., Yao J. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms. Sensors, 2011, vol. 11, pp. 3687–3705.
20. Kablov E. N., Startsev O. V., Medvedev I. M., Shelemba I. S. Volokonno-opticheskie datchiki dlya monitoringa korrozionnykh protsessov v uzlakh aviatsionnoi tekhniki (obzor) [Fiber-optic sensors for monitoring corrosion processes in aviation equipment nodes (review)]. Aviatsionnye materialy i tekhnologii = Aviation Materials and Technologies, 2017, no. 3 (48), pp. 26–34. https://doi.org/10.18577/2071-9140-2017-0-3-26-34
Review
For citations:
Mukhin I.E., Koptev D.S. Analysis of the Functional Capabilities of Technical tools for Measuring Aircraft Mechanical Parameters. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2023;13(1):73-92. (In Russ.) https://doi.org/10.21869/2223-1536-2023-13-1-73-92