Information Processing Model in the Coefficient Inverse Problem for an Algebraic Polynomial
https://doi.org/10.21869/2223-1536-2022-12-4-177-191
Abstract
The purpose of research is to develop a model for describing and evaluating the effectiveness of solving the coefficient inverse problem of analyzing and processing information about an algebraic polynomial with given coefficients of terms of lower degrees under the influence of input data error on the solution efficiency.
Methods. As a basic mathematical apparatus, the methodology for solving inverse problems with the approximation of functions by the Lagrange interpolation polynomial is used. Under the conditions of a uniform continuous error rate of the input data, when evaluating the efficiency of solving the coefficient inverse problem, it is proposed to use the minimum value of the objective function in the form of the minimum of the Lebesgue function. When deriving explicit formulas for the optimal plan of coordinates of the nodes of the approximation grid, it is proposed to apply the alternance characteristic of the extremal polynomial.
Results. As the basic elements of a mathematical model for analyzing and processing information about an algebraic polynomial in solving a coefficient inverse problem, Lagrange interpolation polynomials were used with a numerical estimate of the solution efficiency by the value of the minimum of the Lebesgue function.
Conclusion. In the course of the research, we solved the problem of developing a model for describing and evaluating the efficiency of the coefficient inverse problem of analyzing and processing information about an algebraic polynomial with given coefficients of terms of lower degrees and with the influence of the input data error on the accuracy of the solution. It is shown that to quantify the effectiveness of solving the problem, one should use the value of the objective function in the form of the minimum of the Lebesgue function, and to calculate the coefficients of the approximate polynomial, use the Lagrange interpolation polynomial.
About the Author
A. P. LoktionovRussian Federation
Askold P. Loktionov, Dr. of Sci. (Engineering), Associate Professor
Researcher ID: P-5434-2015
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Bakushinsky A. B., Kokurin M. M., Kokurin M. Yu. Regularization Algorithms for Ill-Posed Problems. Inverse and Ill-Posed Problems Series, 61. Boston, De Gruyter, 2018. 326 p. https://doi.org/10.1515/9783110557350 188 Моделирование в медицинских и технических системах / Modeling in Medical and Technical Systems
2. Perel'muter A. V. Obratnye zadachi stroitel'noi mekhaniki [Inverse problems of structural mechanics]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta = Bulletin of the Tomsk State University of Architecture and Civil Engineering, 2020, vol. 22, no. 4, pp. 83-101. https://doi.org/10.31675/1607-1859-2020-22-4-83-101
3. Vatul'yan A. O., Plotnikov D. K. Obratnye koeffitsientnye zadachi v mekhanike [Inverse coefficient problems in mechanics]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika = Bulletin of Perm National Research Polytechnic University. Mechanics, 2019, no. 3, pp. 37-47. https://doi.org/10.15593/perm.mech/2019.3.04
4. Cheney E. W., Kincaid D. R. Numerical Mathematics and Computing. Belmont, Thomson Brooks/Cole, 2013.
5. Loktionov A. P. Chebyshevskii al'ternans pri approksimatsii nachal'nykh uslovii obratnoi zadachi Koshi [Chebyshevsky alternance in approximation of initial conditions of the inverse Cauchy problem]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2021, vol. 25, no. 3, pp. 86-102. https://doi.org/10.21869/2223-1560-2021-25-3-86-102
6. Kabanikhin S. I. Obratnye zadachi i iskusstvennyi intellekt [Inverse problems and artificial intelligence]. Uspekhi kibernetiki = The Successes of Cybernetics, 2021, vol. 2, no. 3, pp. 33-43. https://doi.org/10.51790/2712-9942-2021-2-3-5
7. Boykov I. V., Krivulin N. P. An Approximate Method for Recovering Input Sig-nals of Measurement Transducers [Approximate Method for Recovering Input Signals of Measurement Transducers]. Measurement Techniques = Measurement Techniques, 2022, vol. 64, pp. 943-948. https://doi.org/10.1007/s11018-022-02026-3
8. Smirnova A., Bakushinsky A. On iteratively regularized predictor-corrector algorithm for parameter identification. Inverse Problems, 2020, vol. 36, no. 12, p. 30. https://doi.org/10.1088/1361-6420/abc530
9. Balakin D. A., Pyt'ev Yu. P. Reduktsiya izmereniya pri nalichii sub"ektivnoi informatsii [Reduction of measurement in the presence of subjective information]. Matematicheskoe modelirovanie = Mathematical Modeling, 2018, vol. 30, no. 12, pp. 84-110.
10. Samarskii A. A., Vabishchevich P. N. Numerical Methods for Solving Inverse Problems of Mathematical Physics. Inverse and Ill-Posed Problems Series 52. Berlin, New York, De Gruyter, 2008. 438 p. https://doi.org/10.1515/9783110205794
11. Loktionov A. P. Regularization of the lattice time function of the signal in the communication channel. Telecommunications and Radio Engineering, 2013, vol. 72, no. 2, pp. 161-171. https://doi.org/10.1615/TelecomRadEng.v72.i2.70
12. Loktionov A. P. Informatsionnaya sistema analiza balochnykh elementov pod kombinirovannoi nagruzkoi [Information system for analysis of beam elements under combined load]. Stroitel'naya mekhanika i raschet sooruzhenii = Construction Mechanics and Calculation of Structures, 2021, no. 2, pp. 45-52. https://doi.org/10.37538/0039-2383.2021.2.45.52
13. Kudryavtsev K. Ya. Algoritm postroeniya polinoma nailuchshego ravnomernogo priblizheniya po eksperimental'nym dannym [Algorithm for constructing the polynomial of the best uniform approximation according to experimental data]. Vestniknatsional'nogo issledovatel'skogo yadernogo universiteta "MIFI" = Bulletin of the National Research Nuclear University "MEPhI", 2019, vol. 8, no. 5, pp. 480-486. https://doi.org/10.1134/S2304487X1905002X
14. Kalitkin N. N., Kolganov S. A. Postroenie approksimatsii, udovletvoryayushchikh chebyshevskomu al'ternansu [Construction of approximations satisfying Chebyshev alter-nance]. Preprinty IPM im. M. V. Keldysha = Preprints of the Keldysh Institute of Applied Mathematics, 2020, no. 91, p. 33. https://doi.org/10.20948/prepr-2020-91
15. Kalenchuk-Porkhanova A. Best Chebyshev approximation for compression of big information arrays. Proceedings of the 10th International Scientific and Practical Conference named after A. I. Kitov "Information Technologies and Mathematical Methods in Economics and Management (IT&MM-2020)". October 15-16, 2020. Moscow, 2020, pp. 1-13.
16. Verbrugge M. W., Wampler C. W., Baker D. R. Smoothing methods for numerical differentiation to identify electrochemical reactions from open-circuit-potential data. Journal of The Electrochemical Society, 2018, vol. 165, no. 16, pp. A4000-A4011. https://doi.org/10.1149/2.0951816jes
17. Ibrahimoglu B. A. Lebesgue functions and Lebesgue constants in polynomial interpolation. Journal of Inequalities and Applications, 2016, vol. 93, pp. 1-15. https://doi.org/10.1186/s13660-016-1030-3
18. Loktionov A. P. Information measuring system of numerical differentiation for the analysis of elements of mechanical structures. Journal of the Serbian Society for Computational Mechanics, 2018, vol. 12, no. 2, pp. 53-71. https://doi.org/10.24874/jsscm.2018.12.02.04
19. Shakirov I. A. Polnoe issledovanie funktsii Lebega, sootvetstvuyushchikh klassicheskim interpolyatsionnym polinomam Lagranzha [Complete study of Lebesgue functions corresponding to classical Lagrange interpolation polynomials]. Izvestiya vuzov. Matematika = Proceedings of Universities. Mathematics, 2011, no. 10, pp. 80-88.
20. Zolotarev E. I. Prilozhenie ellipticheskikh funktsii k voprosam o funktsiyakh, naimenee i naibolee otklonyayushchikhsya ot nulya [Application of elliptic functions to questions about functions that deviate least and most from zero]. Leningrad, AN SSSR Publ., 1932, pp. 1-59. https://doi.org/10.21638/11701/spbu01.2020.101
21. Agafonova I. V., Malozemov V. N. Ekstremal'nye polinomy, svyazannye s po- linomami Zolotareva [Extremal polynomials related to Zolotarev polynomials]. Vestnik Sankt- Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya = Bulletin of St. Petersburg University. Mathematics. Mechanics. Astronomy, 2020, vol. 65, no. 7, is. 1, pp. 3-14. https://doi.org/10.21638/11701/spbu01.2020.101
22. Aliev M. S. Ob odnoi klassifikatsii lineino nezavisimykh sistem funktsii [On one classification of linearly independent systems of functions]. Vestnik Dagestanskogo gosudarstvennogo universiteta. Seriya 1: Estestvennye nauki = Bulletin of Dagestan State University. Series 1: Natural Sciences, 2021, vol. 36, no. 1, pp. 15-23. https://doi.org/10.21779/2542-0321-2021-36-1-15-23
23. Malozemov V. N. Chto daet informatsiya ob al'ternanse? [What gives information about alternance?]. Izbrannye lektsii po ekstremal'nym zadacham [Selected lectures on extreme problems]. St. Petersburg, VVM Publ., 2017, pt. 2, pp. 259-267.
24. Agafonova I. V., Malozemov V. N. Ekstremal'nye polinomy, svyazannye s po- linomami Zolotareva [Extreme polynomials related to Zolotarev polynomials]. Doklady Akademii nauk = Reports of the Academy of Sciences, 2016, vol. 5, is. 467, pp. 255-256. https://doi.org/10.7868/S0869565216090036
25. Denisov A. M. Iterative method for solving an inverse coefficient problem for a hyperbolic equation. Differential Equations, 2017, vol. 53, pp. 916-922. https://doi.org/10.1134/S0012266117070084
26. Malozemov V. N., Tamasyan G. Sh. Etyud na temu polinomial'noi fil'trovoi zadachi (n = 3) [Etude on the topic of the polynomial filter problem (n = 3)]. Izbrannye lektsii po ekstremal'nym zadacham [Selected lectures on extreme problems]. St. Petersburg, VVM Publ., 2017, pt. 2, pp. 305-315.
Review
For citations:
Loktionov A.P. Information Processing Model in the Coefficient Inverse Problem for an Algebraic Polynomial. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2022;12(4):177-191. (In Russ.) https://doi.org/10.21869/2223-1536-2022-12-4-177-191