Preview

Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering

Advanced search

Algorithms for Visualization of Streaming Data of Medical Signal Processing Programs in WINDOWS OS

https://doi.org/10.21869/2223-1536-2022-12-3-109-125

Abstract

Purpose of research is development of algorithms for visualization of multichannel threads of biomedical data in the process of monitoring the functional state of a patient.

Methods. Algorithms for representing multichannel monitoring biomedical signals in the form of graphs on the screen of a video monitor are proposed. The problems of building data processing and visualization systems in the Windows operating system are shown., It is proposed to use "performance counters" - special registers of the central processor that allow you to measure time intervals with an accuracy of fractions of microseconds to solve the problem of performing thread pauses when designing real-time signal processing systems. An algorithm for the procedure for performing pauses in real-time signal processing systems in the Windows operating system based on performance counters has been developed. The algorithm is based on including the Sleep function with a zero argument in the performance counter status polling loop.

Results. In multichannel systems for monitoring biomedical data, it is proposed to use pipeline processing, in which the overall computational process is split into certain stages, called steps. A separate piece of hardware is allocated for each stage. Approbation of the operation algorithm of the stage of visualization of multichannel data has been carried out. The algorithm performs display device initialization and then a graphics rendering workflow based on the supplied data. Based on the proposed algorithm, a monitor of biosignals (electromyosignal and electrocardiosignal) was developed, which allows drawing several thousand graphic primitives per second and displaying signals in real time on the video monitor screen.

Conclusion. In the course of the study, algorithms for visualizing streaming data of medical signals in the Windows operating system were developed. Data sources were a variety of medical equipment, such as biopotential amplifiers, electrocardiographs, pulse oximeters, heart rate monitors, etc., as well as systems for calculating diagnostic indicators. The algorithms are focused on object-oriented software, which makes it possible to implement it in new systems for recording medical signals in the Windows operating system.

About the Authors

A. A. Kuzmin
Southwest State University
Russian Federation

Alexander A. Kuzmin, Dr. of Sci. (Engineering), Professor, Associate Professor of the Department of Biomedical Engineering

50 Let Oktyabrya Str. 94, Kursk 305040



M. B. Myasnyankin
Southwest State University
Russian Federation

Maksim B. Myasnyankin, Post-Graduate
Student of the Department of Biomedical
Engineering

50 Let Oktyabrya Str. 94, Kursk 305040



A. A. Maslak
Branch of the “Kuban State University” in Slavyansk-on-Kuban
Russian Federation

Anatoly A. Maslak, Dr. of Sci. (Engineering), Professor of the Department of Mathematics, Computer Sciences, Natural Sciences and General Technical Disciplines

200 Kubanskaya Str., Slavyansk-on-Kuban 353560



S. A. Filist
Southwest State University
Russian Federation

Sergey A. Filist, Dr. of Sci. (Engineering), Professor of the Department of Biomedical Engineering

50 Let Oktyabrya Str. 94, Kursk 305040



References

1. Myasnyankin M. B., Philist S. A., Kiselev A. V., Kuzmin A. A. Formirovaniye deskriptorov dlya klassifikatorov funktsional'nogo sostoyaniya sistemy dykhaniya na osnove spektral'nogo analiza elektrokardiosignala [Formation of descriptors for classifiers of the functional state of the respiratory system based on the spectral analysis of the electrocardiosignal]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravleniye, vychislitel'naya tekhnika, informatika. Meditsinskoye priborostroyeniye = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2020, vol. 10, no. 3/4, pp. 8-28.

2. Kiselev A. V., Kuzmin A. A., Myasnyankin M. B., Maslak A. A., Philist S. A., Ry- bochkin A. F. Klassifikatsiya funktsional'nogo sostoyaniya sistemy dykhaniya na osnove analiza variabel'nosti medlennykh voln VLF-diapazona [Classification of the functional state of the respiratory system based on the analysis of the variability of slow waves in the VLF range]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravleniye, vychislit- el'naya tekhnika, informatika. Meditsinskoye priborostroyeniye = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2022, no. 1, vol. 12, pp. 8-32.

3. Trifonov A. A., Filist S. A., Petrunina E. V., Kuzmin A. A., Safronov R. I., Krikunova E. V. Metod i algoritmy dekodirovaniya elektrofiziologicheskikh signalov v biotekhnicheskikh sistemakh reabilitatsionnogo tipa [Method and algorithms for decoding electrophysiological signals in biotechnical systems of rehabilitation type]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravleniye, vychislitel'naya tekhnika, informatika. Meditsinskoye priborostroyeniye = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2021, vol. 11, no. 3, pp. 48-77.

4. Trifonov A. A., Filist S. A., Kuzmin A. A., Zhilin V. V., Petrunina E. V. Dvukhurovnevaya neyrosetevaya model' deshifratora elektromiosignala v sisteme upravleniya vertikalizatsiyey ekzoskeleta [Two-level neural network model of the electromyosignal decoder in the exoskeleton verticalization control system]. Prikaspiyskiy zhurnal: upravleniye i vysokiye tekhnologii = Caspian Journal: Management and High Technologies, 2020, no. 4 (52), pp. 99-111.

5. Tomakova R. A., Philist S. A., Fools I. V. Programmnoye obespecheniye avtomaticheskoy klassifikatsii rentgenogramm grudnoy kletki na osnove gibridnykh klassifikatorov [Software for automatic classification of chest radiographs based on hybrid classifiers]. Ekologiya cheloveka = Human Ecology, 2018, no. 6, pp. 59-64.

6. Filist S. A., Tomakova R. A., Yaa Z. D. Universal'nyye setevyye modeli dlya zadach klassifikatsii biomeditsinskikh dannykh [Universal network models for problems of classification of biomedical data]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 4(43), pt. 2, pp. 44-50.

7. Trifonov A. A., Kuzmin A. A., Filist S. A., Degtyarev S. V., Petrunina E. V. Biotechnical system for control to the exoskeleton limb based on surface myosignals for rehabilitation complexes. 14th IEEE International Conference on Application of Information and Communication Technologies, AICT 2020 - Proceedings, 2020, p. 9368588.

8. Trifonov A. A., Kuzmin A. A., Pavlenko A. V. Besprovodnaya sistema registratsii signalov elektromiogrammy dlya biotekhnicheskikh sistem reabilitatsionnogo tipa [Wireless system for recording electromyogram signals for biotechnical systems of rehabilitation type]. Radioelektronika. Problemy i perspektivy razvitiya. Sbornik trudov [Radioelectronics. Problems and prospects of development. Collection of works]. Tambov, Tambov State Technical University Publ., 2021, pp. 356-360. (In Russ.)

9. Belobrov A. P., Kuzmin A. A., Philist S. A. Mnogomernaya chastotnaya selektsiya v zadachakh analiza medlennykh voln [Multidimensional frequency selection in problems of analysis of slow waves]. Biomeditsinskaya radioelektronika = Biomedical Radioelectronics, 2010, no. 2, p. 4-10.

10. Petrova T. V., Philist S. A., Degtyarev S. V., Kiselev A. V., Shatalova O. V. Prediktory sinkhronnosti sistemnykh ritmov zhivykh sistem dlya klassifikatorov ikh funktsional'nykh sostoyaniy [Synchronicity predictors of systemic rhythms of living systems for classifiers of their functional states]. Sistemnyy analiz i upravleniye v biomeditsinskikh sistemakh = System Analysis and Management in Biomedical Systems, 2018, vol. 17, no. 3, pp. 693-700.

11. Myasnyankin M. B., Kuzmin A. A., Filist S. A., Shulga L. V. Classification of the functional state of the respiratory system based on the spectral analysis of the electrocardio signal. CEUR Workshop Proceedings. ITIDMS 2021 - Proceedings of the International Scientific and Practical Conference "Information Technologies and Intelligent Decision Making Systems". Moscow, 2021.

12. Kiselev A. V., Savinov D. Yu., Filist S. A., Shatalova O. V., Zhilin V. V. Virtual'nyye potoki v gibridnykh reshayushchikh modulyakh klassifikatsii slozhnostrukturiruyemykh dannykh [Virtual threads in hybrid decision modules for classifying complex data]. Prikaspiyskiy zhurnal: upravleniye i vysokiye tekhnologii = Caspian Journal: Management and High Technologies, 2018, no. 2 (42), pp. 137-149.

13. Open G. L. The Industry's Foundation for High Performance Graphics. From Games To Virtual Reality, Mobile Phones To Supercomputers. Available at: https://www.opengl.org/. (accessed 01.05.2022)

14. Windows: Sleep(0.5). Available at: https://habr.com/ru/post/319402/. (accessed 01.05.2022)

15. Tomakova R. A., Filist S., Pykhtin A. Development and research of methods and algorithms for intelligent systems for complex structured images classification. Journal of Engineering and Applied Sciences, 2017, vol. 12. no. 22, pp. 6039-6041.

16. Richter J. Windows dlya professionalov: sozdanie effektivnykh Win32 prilozhenii s uchetom spetsifiki 64-razryadnoi versii Windows [Windows for Professionals: Building Efficient Win32 Applications with 64-bit Windows in Mind]. St. Petersburg, Peter Publ., Moscow, Russian Edition Publ., 2001. 752 p.

17. Tomakova R. A., Mohammed A. A., Pleskanos L. V. Mnogoagentnye sistemy klassifikatsii na osnove nelineiinykh modelei impedansa v bioaktivnykh tochkakh [Multiagent classification systems based on nonlinear impedance models in bioactive points]. Biomeditsinskaya radioelektronika = Biomedical Radioelectronics, 2014, no. 9, pp. 51-55.

18. Tekhnicheskaya dokumentatsiya Maikrosoft [Microsoft technical documentation]. Available at: https://docs.microsoft.com/ru-ru. (accessed 01.05.2022)

19. Tomakova R. A, Yaa Zar Do, Shatalova O. V., Tomakov M. V. Programma singulyarnogo analiza elektrokardiosignala [Program of singular electrocardiosignal analysis]. Certificate RF, no. 201561266, 2015.

20. Tomakova R. A., Filist S. A., Kuzmin A. A., Kuzmina M. N., eds. Ustroistvo dlya kontrolya anizotropii elektricheskoi provodimosti biotkanei [A device for controlling the anisotropy of electrical conductivity of biological tissues]. Patent RF, no. 2504328, 2014.


Review

For citations:


Kuzmin A.A., Myasnyankin M.B., Maslak A.A., Filist S.A. Algorithms for Visualization of Streaming Data of Medical Signal Processing Programs in WINDOWS OS. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2022;12(3):109-125. (In Russ.) https://doi.org/10.21869/2223-1536-2022-12-3-109-125

Views: 120


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1536 (Print)