Preview

Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering

Advanced search

Software Designed to Digitize the Transition Characteristic when Conducting Bioimpedance Studies on a Biological Object

Abstract

Purpose of research. Development of a method for generating descriptors for neural network classifiers of medical risks based on the analysis of transients in biomaterial in an in vivo experiment.

Methods. The essence of the proposed method consists in the formation of test effects of the probing current on anatomical areas with abnormal electrical conductivity and obtaining the amplitude-phase-trequency characteristic of the impedance of the biomaterial on which the test effect was carried out. The coordinates of the Cole graph of the biomaterial were used as descriptors. The Cole graph is obtained on the basis of the Carson transformation of the transition process samples in a four-pole array, the element of which is the impedance of the biomaterial under study. A sequence of unipolar rectangular pulses was applied to the input of the quadrupole.

Results. On the basis of the E20-10 data collection system manufactured by L-Card, a software and hardware complex has been developed for digitizing transients in four-pole devices, the element of which is the biomaterial impedance in anatomical areas with abnormal electrical conductivity. Software has been developed for the formation of test effects and digitization of signals that are the reaction of the biomaterial to these test effects. A theoretical model of the transition from the samples of the transition characteristic of a quadrupole with a biomaterial impedance element to the Cole graph of a biomaterial is proposed.

Conclusion. It is shown that the linear model of the biomaterial impedance allows us to obtain descriptors based on its amplitude-phase-frequency characteristic, which take into account the dissipative properties of the biomaterial. Obtaining a model of the Cole graph, taking into account its dissipative properties, allows us to build classifiers of medical risk for socially significant diseases.

About the Authors

R. A. Tomakova
Southwest State University
Russian Federation

Rimma A. Tomakova, Dr. of Sci. (Engineering), Professor

50 Let Oktyabrya str. 94, Kursk 305040



A. V. Brezhnev
Russian University of Economics name after G. V. Plekhanov
Russian Federation

Alexey V. Brezhnev, Cand. of Sci. (Engeneering), Associate Professor

Stremyanny Lane 36, Moscow 117997



N. A. Korsunsky
Southwest State University
Russian Federation

Nikita A. Korsunsky, Undergraduate

50 Let Oktyabrya str. 94, Kursk 305040



I. S. Egorov
Southwest State University
Russian Federation

Ilya S. Egorov, Post-Graduate Student

50 Let Oktyabrya str. 94, Kursk 305040



References

1. Analiz normy st. 41 UK RF ob obosnovannom riske s tochki zreniya teoreti-cheskoi obosnovannosti [Analysis of the norm of Article 41 of the Criminal Code of the Russian Federation on reasonable risk from the point of view of theoretical validity]. Available at: http://studbooks.net/1116912/pravo/meditsinskiy_risk_obosnovannogo_riska. (accessed 11.12.2020)

2. Rostovtsev V. N. Klassifikatsiya meditsinskikh riskov [Classification of medical risks]. Available at: http://www.kmsd.su/ vracham/nauchnye-stati/klassifikatsiya-meditsinskikh- riskov-rostovtsev-v-n. (accessed 11.12.2021)

3. Shatalova О. V. Intellektual'nye sistemy monitoringa meditsinskikh riskov s uchetom bioimpedansnykh issledovanii [Intellectual systems for monitoring medical risks taking into account bioimpedance studies], Kursk, Southwest State University Publ., 2020. 356 p.

4. Efremov M. A., Filist S. A., Shatalova О. V., Startsev E. A., Shulga L. V. Intel- lektual'nye sistemy monitoringa meditsinskikh riskov s uchetom bioimpedansnykh issledovanii: monografiya [Hybrid fuzzy models for predicting the occurrence and complications of arterial hypertension taking into account the energy characteristics of bioactive points], Izvestiya Yugo-Zapadnogo universiteta. Seriya. Upravlenie, vychislitel'naya tekhnika, in- formatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Management, Computer Technology, Informatics. Medical Instrumentation, 2018, vol. 8, no. 4(29), pp. 104-119.

5. Catherine J. There are more viruses in the universe than there are stars. Available at: https://www.nationalgeographic.com/science/2020/04/factors-allow-viruses-infect-humans-coronavirus. (accessed 12.12.2021)

6. Shatalova О. V., Burmaka A. A., Korovin E. N. Impedance models in anomalous electrical conduction zones forming by in-vivo experiments for intelligent systems of socially important diseases diagnostic. Available at: https://ieeexplore.ieee.org/document/8501668. (accessed 11.12.2020)

7. Gotovsky M. Yu., Perov Yu. F. Elektrokhimicheskie protsessy na elektrodakh pri el- ektropunkturnoi diagnostike. Soobshchenie 1. Postoyannyi tok [Electrochemical processes on electrodes at electropuncture diagnostics. Message 1. Direct current], Traditsionnaya meditsina = Traditional Medicine, 2013, no. 4 (35), pp. 4-9.

8. Seoane F., Lindecrantz K., Olsson T., Kjellmer I. [Bioelectric impedance during hypoxic cell swelling: modeling of tissue asa suspension of cells], Proc. XII Int. Conf. on Electrical Bio-Impedance, June 20-24. Gdansk, 2004, pp. 73-76.

9. Kuznetsov V. V., Novikov A. A. Tekhnicheskaya realizatsiya bioimpedansnoi po-li-chastotnoi spektrometrii v diagnosticheskikh issledovaniya [Technical implementation of bioimpedance poly-frequency spectrometry in diagnostic studies], Omskii nauchnyi vestnik = Omsk Scientific Bulletin, 2013, no. 2(116), pp. 235-240.

10. Korenevsky N. A., Filist S. A., Shatalova О. V., Kassim K. D. A., Rudenko V. V. Diagnosticheskie sistemy na osnove analiza voftampernykh kharakteristik bioaktivnykh tochek [Diagnostic systems based on the analysis of current-voltage characteristics of bioactive points], Biotekhnosfera = Biotechnosphere, 2013, no. 5 (29), no. 33-38.

11. Filist S. A., Kuzmin A. A., Kuzmina M. N. Biotekhnicheskaya sistema dlya kontrolya impedansa biomaterialov v ekspe-rimentakh in vivo [Biotechnical system for controlling the impedance of biomaterials in experiments in vivo], Biomeditsinskaya radioelektronika = Biomedical Radioelectronics, 2014, no. 9, pp. 38-41.

12. Filist S. A., Shatalova О. V., Bogdanov A. S. Modeli bioimpedansa pri nebneinoi voftampernoi kharakteristike i obratimom proboe dielektricheskoi sostavlyayushchei bio-materiala [Models of bioimpedance at nonlinear current-voltage characteristic and reversible breakdown of the dielectric component of biomaterial]. Byulleten' sibirskoi meditsiny = Bulletin of Siberian Medicine, 2014, vol. 13, no. 4, pp. 129-135.

13. Opredebtelev E. P., Filist S. A. Sposoby i modeli identifikatsii bioma-terialov na osnove analiza mnogochastotnogo impedansa [Methods and models for identifying biomaterials based on the analysis of multi-frequency impedance]. Izvestiya Yugo-Zapadnogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Management, Computer Technology, Informatics. Medical Instrumentation, 2011, no. 1, pp. 74-80.

14. Kassim K. D. A., I Klyuchikov. A., Shatalova О. V., Yaa Z. D. Parametricheskie modeli bioimpedansa dlya identifikatsii funktsional'-nogo sostoyaniya zhivoi sistemy [Parametric models of bioimpedance for the identification of the functional state of a living system], Biomeditsinskaya radioelektronika = Biomedical Radioelectronics, 2012, no. 4, pp. 50-56.

15. Filist S. A., Surzhikova S. E., Muchataev Yu. B. ssledovanie provodimosti biomaterialov v bioaktivnykh tochkakh pri tsiklicheskikh vozdeistviyakh tokami razlichnoi polyarnosti [Investigation of the conductivity of biomaterials in bioactive points under cyclic effects of currents of different polarities], Biomeditsinskaya radioelektronika = Biomedical Radioelectronics, 2016, is. 9, pp. 32-36.

16. Tomakova, R. A., Naser A. A., Shatalova О. V. Matematicheskoe obespechenie raspoznavaniya i klassifikatsii slozhnostrukturiruemykh biologicheskikh ob"ektov [Mathematical support for recognition and classification of complexly structured biological objects]. Mezhdunarodnyi zhurnalprikladnykh i funkdamental'nykh issledovanii = International Journal of Applied and Fundamental Research, 2012, no. 4, pp. 48-49.

17. Surzhikova S. E., Shatalova О. V., Fedyanin V. V. Programmno-apparatnyi kompleks dlya analiza vol'tampernykh kharakteristik bioaktivnykh tochek na osnove modulya L-Card E20-10 [Software and hardware complex for analyzing the current-voltage characteristics of bioactive points based on the L-Card E20-10 module], Prikaspiiskii zhurnal: upravlenie i vysokie tekhnologii = Caspian Journal: Management and High Technologies, 2015, no. 2(30), pp. 150-161.


Review

For citations:


Tomakova R.A., Brezhnev A.V., Korsunsky N.A., Egorov I.S. Software Designed to Digitize the Transition Characteristic when Conducting Bioimpedance Studies on a Biological Object. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2021;11(1):50-67. (In Russ.)

Views: 94


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1536 (Print)