Specification of Parameters of Deviations of Unmanned Aerial Vehicles from a Given Trajectory, Measured by Means of Inertial Navigation, from Images of the Underlying Surface
https://doi.org/10.21869/2223-1536-2022-12-3-62-79
Abstract
Purpose of research is development of a technique providing specification of inertial measurements of parameters of deviations of unmanned aerial vehicles from a given trajectory by parallax images of the underlying surface.
Methods. For the mathematical description of the specification procedures, a mathematical model of deviation parameters was used, establishing a functional relationship between these parameters, the plane coordinates of the corresponding points and the parallaxes of overlapping images of the underlying surface. The nonlinear system of equations describing this functional relationship was solved using the least squares method with an estimate of the accuracy of the results obtained.
Results. A technique has been developed to specify the parameters of deviations of unmanned aerial vehicles from a given trajectory based on autonomic photogrammetric processing of overlapping images of the underlying surface. Linearization is performed and a procedure for solving a system of nonlinear equations describing a model of deviation parameters is described. Analytical relations for a posteriori estimation of the accuracy of the obtained results are obtained.
Conclusion. The developed technique provides clarification of the values of uncoordinated deviations of the flight route of unmanned aerial vehicles from a given trajectory, measured by means of inertial navigation in conditions of loss of signals from navigation satellites. The proposed approach, in comparison with known methods, makes it possible to reduce the number of processes corresponding to points on overlapping images by three times. This makes it possible to significantly reduce the level of computational and resource costs that the developed methodology has, provides a specification that is of great importance for using the developed methodology on board small-sized unmanned aerial vehicles.
About the Authors
V. G. AndronovRussian Federation
Vladimir G. Andronov, Dr. of Sci. (Engineering), Head of the Department of Space Instrumentation and Communication Systems
50 Let Oktyabrya Str. 94, Kursk 305040
A. A. Chuev
Russian Federation
Andrey A. Chuev, Post-Graduate Student of the Department of Space Instrumentation and Communication Systems
50 Let Oktyabrya Str. 94, Kursk 305040
I. S. Yudin
Russian Federation
Ilya S. Yudin, Student of the Department of Constitutional Law
50 Let Oktyabrya Str. 94, Kursk 305040
N. S. Dubrovsky
Russian Federation
Nikita S. Dubrovsky, Student of the Department of Constitutional Law
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Salychev O. S. Avtopilot BPLA s inertsial'noi integrirovannoi sistemoi - osnova bezopasnoi ekspluatatsii bespilotnykh kompleksov [UAV autopilot with an Inertial Integrated System is the basis for the safe operation of unmanned complexes]. Available at: http://www.teknol.ru/trash/uav_autopilot_salychev_2602182965.pdf. (accessed 14.05.2021)
2. Pronkin A. N., Kuznetsov I. M., Veremeenko K. K. Integrirovannaya navigatsionnaya sistema BPLA: struktura i issledovanie kharakteristik [Integrated UAV navigation system: structure and research of characteristics]. Trudy MAI = Proceedings of MAI, 2010, no. 41, pp. 14.
3. Hosseini K., Ebadi H., Farnood Ahmadi F. Determining the location of UAVs automatically using aerial or remotely sensed high-resolution images for intelligent navigation of UAVs at the time of disconnection with GPS. Journal of the Indian Society of Remote Sensing, 2020, no. 48(12), pp. 1675-1689. htpps://doi.org/10.1007/s12524-020-01187-4
4. Andronov V. G., Emelyanov S. G. Autonomous navigation and attitude control of spacecrafts on near-earth circular orbits. Journal of Applied Engineering Science, 2018, vol. 16, no. 1, pp. 107-110.
5. Kikutis R., Stankunas J., Rudinskas D. Autonomous unmanned aerial vehicle flight accuracy evaluation for three different path-tracking algorithms. Transpor, 2019, no. 34(6), pp. 652-661.
6. Arulmurugan L., Raghavendra Prabhu S., Ilangkumaran M., Suresh V., Saravanakumar R., Raghunath M. R. Kinematics and plane decomposition algorithm for non linear path planning navigation and tracking of unmanned aerial vehicles. IOP Conference Series: Materials Science and Engineering, 2020, p. 012019.
7. Luo S., Liu H., Hu M., Dong J. Review of multi-modal image matching assisted inertial navigation positioning technology for unmanned aerial vehicle. Journal of National University of Defense Technology, 2020, vol. 42, no. 6, pp. 1-10.
8. Oleinik I. I., Chernomorets A. A., Andronov V. G., eds. Malorazmernye bespilotnye letatel'nye apparaty: zadachi obnaruzheniya i puti ikh resheniya [Small-sized unmanned aerial vehicles: detection tasks and ways to solve them]. Kursk, Southwest State University Publ., 2021. 171 p.
9. Antonov D. A., Zharkov M. V., Kuznetsov I. M., Lunev E. M., Pronkin A. N. Opredelenie navigatsionnykh parametrov bespilotnogo letatel'nogo apparata na baze fotoizobrazheniya i inertsial'nykh izmerenii [Determination of navigation parameters of an unmanned aerial vehicle based on photographic images and inertial measurements]. Trudy MAI = Proceedings of MAI, 2016, is. 91, pp. 1-26.
10. Andronov V. G., Emelyanov S. G. Avtonomnoe opredelenie elementov vneshnego orientirovaniya kosmicheskikh snimkov [Autonomous determination of elements of external orientation of satellite images]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vy'chislitel'naya texnika, informatika. Medicinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2016, no. 2(19), pp. 77-87.
11. Veremeenko K. K., Koshelev B. V., Soloviev Yu. A. Analiz sostoyaniya razrabotok integrirovannykh inertsial'no-sputnikovykh navigatsionnykh sistem [Analysis of the state of development of integrated inertial-satellite navigation systems]. Novosti navigatsii = Navigation News, 2010, no. 4, pp. 32-41.
12. Andronov V. G., Emelyanov S. G. Metod avtonomnoi navigatsii kosmicheskikh apparatov [Method of autonomous navigation of spacecraft]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2016, no. 2(65), pp. 65-73.
13. Andronov V. G., Emelyanov S. G. Astronavigatsiya kosmicheskikh apparatov na krugovykh okolozemnykh orbitakh [Astronavigation of spacecraft in circular near-Earth orbits]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2016, no. 3(66), pp. 34-44.
14. Veremeenko K. K., Antonov D. A., Zharkov M. V., eds. Integrirovannaya sistema orientatsii i navigatsii BPLA [Integrated UAV orientation and navigation system]. Novosti navigatsii = Navigation News, 2011, no. 4, pp. 22-28.
15. Ardentov A. A., Beschastny I. Y., Mashtakov A. P., eds. Algoritmy vychisleniya polozheniya i orientatsii BPLA [Algorithms for calculating the position and orientation of the UAV]. Programmnye sistemy: teoriya i prilozheniya = Software Systems: Theory and Applications, 2012, vol. 3, no. 3(12), pp. 23-38.
16. Andronov V. G. Tekhnologiya apriornoi otsenki kachestva skanernykh izobrazhenii [Technology of a priori assessment of the quality of space optical-electronic survey]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2014, no. 3(54), pp. 8-12.
17. Andronov V. G., Knyazev A. A., Chuev A. A. Model' parametrov otklonenii marshruta poleta bespilotnykh letatel'nykh apparatov ot zadannoi traektorii [Model of parameters of deviations of the flight route of unmanned aerial vehicles from a given trajectory]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2021, no. 4(25), pp. 145-161.
18. Andronov V. G. Apriornaya otsenka kachestva kosmicheskoi optiko-elektronnoi s"emki [A priori assessment of the quality of space optical-electronic survey]. Izvestiya Yugo- Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vy'chislitel'naya texnika, informatika. Medicinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2014, no. 1, pp. 36-40.
19. Germak O. V. Opredelenie elementov vzaimnogo orientirovaniya snimkov [Determination of elements of mutual orientation of images]. Internet-zhurnal ”Naukovedenie”= Online Journal "Science Studies”, 2012, no. 4, pp. 1-5.
20. Rakov D. N., Nikitin V. N. Vybor tsifrovogo nemetricheskogo fotoapparata dlya bespilotnogo aerofotos"emochnogo kompleksa [The choice of a digital non-metric camera for an unmanned aerial photography complex]. Interekspo Geo-Sibir' = Interexpo Geo-Siberia, 2012, no. 7, pp. 27-36.
Review
For citations:
Andronov V.G., Chuev A.A., Yudin I.S., Dubrovsky N.S. Specification of Parameters of Deviations of Unmanned Aerial Vehicles from a Given Trajectory, Measured by Means of Inertial Navigation, from Images of the Underlying Surface. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2022;12(3):62-79. (In Russ.) https://doi.org/10.21869/2223-1536-2022-12-3-62-79