Evaluation of Fractional Blood Saturation in an Aircraft Pilot Under the Influence of Dynamic Flight Factors
https://doi.org/10.21869/2223-1536-2022-12-2-98-120
Abstract
The purpose of research is to improve the accuracy in assessing the level of blood oxygen saturation in an aircraft pilot when conducting non-invasive spectrophotometric measurements in transmitted light under the influence of dynamic flight factors.
Methods are based on the basic concepts of the interaction of optical radiation with biological tissue and blood, the theory of pulse oximetry, probability theory, mathematical statistics, signal theory. When developing mathematical models of photoplethysmographic signals, aircraft noise, vibration, as well as for their representation in the frequency domain, the MATLAB 2019b program with a graphical user interface with a built-in Symbolic Math Toolbox package of mathematical functions was used as a tool.
Results. Mathematical models have been developed to assess the level of functional and fractional blood saturation. Model studies of the influence of dynamic flight factors, such as broadband quasi-harmonic vibration and aircraft noise, on the accuracy of estimating the pilot's blood saturation level have been carried out. It has been shown that to assess functional saturation, it is sufficient to use two sources of optical radiation, while for fractional saturation, their minimum number should be equal to four and is determined by the number of hemoglobin fractions taken into account in the blood. The use of four sources of optical radiation of a given spectral composition (660 nm, 805 nm, 880 nm and 940 nm) when performing non-invasive spectrophotometric measurements to assess the level of blood oxygen saturation compared to two sources (660 nm and 940 nm) allows to reduce the absolute error: in under the influence of broadband quasi-harmonic vibration - 3.64 times; under the influence of aircraft noise (70 dB) and (30 dB) - by 7.64 and 2.5 times, respectively; under the influence of the combined effects of vibration and aircraft noise (30 dB) - by 2.22 times.
Conclusion. For an adequate assessment of the pilot's functional state according to the values of his physiological parameters, in particular, the level of blood oxygen saturation, it is necessary to use diagnostic tools based on multiwave pulse oximetry, which allow estimating the level of fractional saturation.
About the Authors
D. S. KoptevRussian Federation
Dmitry S. Koptev, Senior Lecturer, Department of Space Instrumentation and Communication Systems
50 Let Oktyabrya Str. 94, Kursk 305040
I. S. Yudin
Russian Federation
Ilya S. Yudin, Student of the Department of Constitutional Law
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Osnovy aviatsionnoi i kosmicheskoi meditsiny [Fundamentals of aviation and space medicine]; ed. by I. B. Ushakov. Moscow, Slovo Publ., 2007. 344 p.
2. Mukhin I. E., Seleznev S. L., Koptev D. S. Napravleniya i prakticheskie rezul'taty sozdaniya metodov i sredstv diagnostiki i prognostiki sostoyaniya aviatsionnogo kompleksa "chelovek - mashina" [Directions and practical results of creating methods and tools for diagnosing and predicting the state of the aviation complex "man - machine"]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Management, Computer Technology, Informatics. Medical Instrumentation, 2017, vol. 7, no. 3 (24), pp. 46-57.
3. Mukhin I. E., Dvornikov M. V., Koptev D. S. Podsistema kontrolya fiziologicheskogo sostoyaniya pilota kak odnogo iz zven'ev biotekhnicheskoi sistemy ergaticheskogo tipa "pilot - samolet - okruzhayushchaya sreda" [The subsystem for monitoring the physiological state of the pilot as one of the links of the biotechnical system of the ergatic type "pilot - aircraft - environment"]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Management, Computer Technology, Informatics. Medical Instrumentation, 2017, vol. 7, no. 4 (25), pp. 59-69.
4. Godunov A. I., Kuatov B. Zh., Suschik D. M. Algoritmy kontrolya deistvii letnogo ekipazha po upravleniyu letatel'nym apparatom [Sushchik Algorithms for controlling the actions of the flight crew in controlling the aircraft]. Vestnik Karagandinskogo gosudarstvennogo universiteta. Seriya: Matematika = Bulletin of Karaganda State University. Series: Mathematics, 2015, no. 1 (19), pp. 15-24.
5. Alekseenko M. S. Lichnostnyi potentsial v praktike psikhologicheskogo obespecheniya letnoi deyatel'nosti [Personal potential in the practice of psychological support for flight activity]. Psikhologiya i Psikhotekhnika = Psychology and Psychotechnics, 2021, no. 4, pp. 111131.
6. Serikov V.V., Yushkova O. I., Bogdanova V. E., Zibarev E. V., Forverts A. Yu. Otsenka funktsional'nogo sostoyaniya organizma letchikov vo vremya smodelirovannogo poleta na trenazhere [Evaluation of the functional state of the body of pilots during a simulated flight on a simulator]. Vestnnik Tverskogo gosudarstvennogo universiteta. Seriya: Biologiya i ekologiya = Bulletin of Tver State University. Series: Biology and Ecology. Series: Biology and Ecology, 2020, no. 1(57), pp. 17-30.
7. Rukovodstvo po aviatsionnoi meditsine [Guide to aviation medicine]. Available at: http://www.icao.int>publications/Documents/8984_con_s_ru.pdf. (accessed 08.02.2022)
8. Antipina T. V., Isaeva E. E., Shamratova V. G., Usmanova S. R. Vliyanie kureniya na sostoyanie kislorodtransportnoi sistemy krovi yunoshei v zavisimosti ot urovnya ikh dvigatel'noi aktivnosti [The influence of smoking on the state of the oxygen transport system of the blood of young men depending on the level of their physical activity]. Fizicheskaya kul'tura, sport - nauka i praktika = Physical Culture, Sport - Science and Practice, 2019, no. 1, pp. 78-83.
9. Hampson N. B., Scott K. L. Use of a noninvasive pulse CO-oximeter to measure blood carboxyhemoglobin levels in bingo players. Respiratory Care, 2006, vol. 51, pp. 758-760.
10. Jarman K. H. Method and apparatus for improved photoplethymosgraphic monitoring of oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin and methemoglobin. Patent US, no. 5.842.979, 1998.
11. Aoyagi T., Fuse M., Kobayashi N., Machida K., Miyasaka K. Multi-wavelength pulse oximetry: theory for the future. Anesthesia and Analgesia, 2007, vol. 105, pp. S53-58.
12. Barker S. J., Curry J., Redford D., Morgan S. Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study. Anesthesiology, 2006, vol. 105, pp. 892-897.
13. Shapovalov V. V., Dudnikov S. Y., Zagorsky I. G., Gurevich B. S. A non-invasive method for spectroscopic blood glucose monitoring. Modern Technologies in Medicine, 2019, no. 11(2), pp. 110-114. https://doi.org/10.17691/ stm2019.11.2.16
14. Lambert J. Photometria, sive de mensure et gradilus luminus, colorum et mubrac. Ostwald's Klassiker den exakten. Wissenchaften, 1892, рр. 31-33.
15. GOST 31191.1-2004. Vibratsiya i udar. Izmerenie obshchei vibratsii i otsenka ee vozdeistviya na cheloveka. Chast' 1. Obshchie trebovaniya [Vibration and shock. Measurement of general vibration and assessment of its impact on a person. Part 1. General requirements]. Available at: http://www.docs.chtd.ru>document/1200060904. (accessed 08.02.2022)
16. Yao J., Warren S.. A short study to assess the potential of independent component analysis for motion artifact separation in wearable pulse oximeter signals. Proc. 27 th Annu. Conf. IEEE Eng. Med. Biol., 2005, pp. 3585-3588.
17. McMurdy J. W., Jay G. D., Suner S., Crawford G.. Noninvasive Optical, Electrical, and Acoustic Methods of Total Hemoglobin Determination. Clinical Chemistry, 2008, vol. 54(2), pp. 264-272.
18. GOST ISO 9919-2011. Izdeliya meditsinskie elektricheskie. Chastnye trebovaniya bezopasnosti i osnovnye kharakteristiki pul'sovykh oksimetrov [Medical electrical products. Particular safety requirements and the main characteristics of pulse oximeters.]. Available at: http://www.docs.cntd.ru>document/1200100803. (accessed 07.02.2022)
19. Nitzan M., Noach S., Tobal E., Adar Y., Miller Y., Shalom E., Engelberg S. Calibration-free pulse oximetry based on two wavelengths in the infrared - a preliminary study. Sensors, 2014, no. 14 (4), pp. 7420-7434.
20. Doshi R., Panditrao A. Non-Invasive Optical Sensor for Hemoglobin Determination. International Journal of Engineering Research and Applications (IJERA), 2013, no. 3, pp. 559-62.
Review
For citations:
Koptev D.S., Yudin I.S. Evaluation of Fractional Blood Saturation in an Aircraft Pilot Under the Influence of Dynamic Flight Factors. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2022;12(2):98-120. (In Russ.) https://doi.org/10.21869/2223-1536-2022-12-2-98-120