Preview

Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering

Advanced search

Investigation of Parameters and Improvement of MRT Compatibie Composite Magnet for Cochiear Implantation

Abstract

The purpose of research to analyze and compare the designs and useful parameters of the models which can be used in cochlear implantation systems in order to select the optimal design.

Methods. The article describes the work carried out in improving the utility models RU 198574, RU 196686, RU 2727227 and creating an external composite magnet. The authors analyzed composite magnets with a different number of magnetic elements (q = 4, 6, 8, 10), as well as the implementation of an internal magnet with and without filling the empty space with ferrofluid.

Results. This article describes the carried work to improve the utility models RU 198574, RU 196686, RU 2727227 to create the improved external composite magnet. The authors provide a model of a modified design of the body of the implantable part of the composite magnet to improve its characteristics. Also was developed an external magnet with cylindrical corpus and seats for cylindrical compound magnets located around the circumference. This design of both composite magnets prevents angular rotations of the composite magnets. This makes it possible to take into account the relative position of the supply and output wires to the receiving and transmitting antennas developing the electrical part of the implant. The article presents the results of modeling the magnetic field of composite magnets with various sizes of housings and magnetic elements. Schemes of the magnetic field distribution during the interaction of both compound magnets are presented in this manuscript as well as the forces of the attracting of the external part and implanted have been calculated. The authors provide a formula for calculating the maximum force of attraction of compound magnets, due to the blood pressure in the capillaries.

About the Authors

A. I. Egorov
Moscow Institute of Physics and Technology
Russian Federation

Alexey I. Egorov, Cand. of Sci. (Physico- mathematical), Head of the Medical Instrumentation Laboratories

9 Institutskiy alley, Dolgoprudny 141701



E. М. Glukhovskiy
Moscow Institute of Physics and Technology
Russian Federation

Evgeniy M. Glukhovskiy, Research Assicstant of the Medical Instrumentation Laboratories

9 Institutskiy alley, Dolgoprudny 141701



G. N. Tkachuk
Moscow Institute of Physics and Technology
Russian Federation

Georgii N. Tkachuk, Laboratory Assistant of the Medical Instrumentation Laboratories

9 Institutskiy alley, Dolgoprudny 141701



References

1. Glukhovskiy Е. М., e. a. Magnit kokhlearnogo implantata na sharovykh elementakh [Cochlear implant magnet on ball elements]. Patent RF, no. 198574, 2020.

2. Kim B. G., Kim J. W., Park J. J., Kim S. H., Kim H. N., Choi J. Y. Adverse Events and Discomfort During Magnetic Resonance Imaging in Cochlear Implant Recipients. JAMA Otolaryngol Head Neck Surg, 2015, no. 141(1), рр. 45-52. https://doi.org/10.1001/jamaoto.2014.2926

3. Deneuve S., Loundon N., Leboulanger N., Rouillon I., Garabedian E. N. Cochlear implant magnet displacement during magnetic resonance imaging. Otol Neurotol, 2008, no. 29(6), рр. 789-790. https://doi.org/10.1097/MAO.0b013e3181825695.

4. Jeon J. H., Bae M. R., Chang J. W., Choi J. Y. Reversing the polarity of a cochlear implant magnet after magnetic resonance imaging. Auris Nasus Larynx, 2012, no. 39(4), рр. 415-417. https://doi.org/10.1016/janl.20n.04.018

5. Majdani O., Leinung M., Rau T. Demagnetization of cochlear implants and temperature changes in 3.0 T MRI environment. Otolaryngol Head Neck Surg, 2008, no. 139, рр. 833-839. https://doi.org/10.1016/jotohns.2008.07.026

6. Dubrulle F., Iancu A. S., Vincent C., Tourrel G., Ernst O. Cochlear implant with a nonremovable magnet: preliminary research at 3-T MRI. European Radiology, 2013, no. 23, рр. 1510-1518. https://doi.org/10.1007/s00330-012-2760-3

7. Zhiping T., е. a. Cochlear implant magnet and device. Patent CN, no. 107308543 (A), 2017.

8. Lee S. J., e. a. Magnets in the Cochlear implants systems. Patent US, no. 2018296826 (A1), 2018.

9. Smith J., e. a. Cochlear implants having impact resistant MRI-compatible magnet apparatus. Patent CN, no. 110545880 (A), 2019.

10. Smith J., e. a. Cochlear implants having impact resistant MRI-compatible magnet apparatus. Patent WO, no. 2016191429A1, 2016.

11. Sudakov К. V. Normal'naya fiziologiya [Normal Physiology]. Moscow, Medical Informative Agency Publ., 2006. 918 р.

12. Eliseeva Yu. Yu. Zabolevaniya kozhi [Skin diseases]. Moscow, Eskimo Publ., 2011.

13. Skarzynski H., Podskarbi-Fayette R. A new cochlear implant electrode design for preservation of residual hearing: a temporal bone study. Acta Otolaryngol. 2018, no. 30, рр. 435-442. https://doi.org/10.3109/00016480903283733

14. Glukhovskiy Е. М., e. a. Magnit kokhlearnogo implantata na sharovykh elementakh [Cochlear implant magnet on ball elements]. Patent RF, no. 196686, 2020.

15. Glukhovskiy Е. М., e. a. Magnit dlya kokhlearnogo implantata na sfericheskikh mag- nitnykh elementakh [Cochlear implant magnet on spherical magnetic elements]. Patent RF, no. 2727227, 2020.

16. Verhaegen V. J. O., Snik F. M., Beynon A. J., Rens Leeuw A., Mylanus E. A. M. Preservation of low-frequency residual hearing after cochlear implantation. Is soft surgery effective? J. Int Adv. Otol., 2010, no. 6, рр. 125-130. https://doi.org/repository.ubn.ru.nl/bit-stream/handle/2066/89669/89669.pdf?sequence=1

17. Gstoettner W., Helbig S., Settevendemie C., Baumann U., Wagenblast J., Arnoldner C. A new electrode for residual hearing preservation in cochlear implantation: first clinical results. Acta Otolaryngol, 2009, no. 129, рр. 372-379. https://doi.org/10.1080/00016480802552568

18. Lenarz T., Stover T., Buechner A., Lesinski-Schiedat A., Patrick J., Pesch J. Hearing conservation surgery using the Hybrid-L electrode. Results from the first clinical trial at the Medical University of Hannover. Audiol Neurotol, 2009, no. 14, рр. 22-31. https://doi.org/10.1159/000206492

19. Balkany T. J., Connell S. S., Hodges A. V., eds. Conservation of residual acoustic hearing after cochlear implantation. Otol Neurotol, 2006, no. 27, рр. 1083-1038. https://doi.org/10.1097/01.mao.0000244355.34577.85

20. Skarzynski H., Lorens A., D'Haese P., eds. Preservation of residual hearing in children and post-lingually deafened adults after cochlear implantation: an initial study. ORL J. Otorhinolaryngol Relat Spec., 2002, no. 64, рр. 247-253. https://doi.org/10.1159/000064134

21. Gotamco G. L., Chou Y.-F., Sun Ch.-H., Hsu Ch.-J., Chen P.-R., Wu H.-P. Comparison of Hearing Preservation Outcomes Using Extended Versus Single-Dose Steroid Therapy in Cochlear Implantation. Otology & Neurotology, 2020, no. 41(4), рр. 449-457 https://doi.org/10.1097/MA0.0000000000002570.

22. Di Nardo W., Cantore I., Melillo P., Cianfrone F., Scorpecci A., Paludetti G. Residual hearing in cochlear implant patients. Eur Arch Otorhinolaryngol, 2007, no. 264, рр. 855-60. https://doi.org/10.1007/s00405-007-0270-8

23. Stuermer K. J., Kluenter H. D., Lang-Roth R., Schwarz D., Huttenbrink K.-B., Anag- iotos A. Preservation of Vestibular Function and Residual Hearing After Round Window Cochlear Implantation. Otology & Neurotology. 2019, no. 40(7), рр. 878-882. https://doi.org/10.1097/MA0.0000000000002257

24. Briggs R. J., Tykocinski M., Stidham K., Roberson J. B. Cochleostomy site: implications for electrode placement and hearing preservation. Acta Otolaryngol, 2005, no. 125, рр. 870-876. https://doi.org/10.1080/00016480510031489

25. Sierra C., Calderon M., Barcena E., Tisaire A., Raboso E. Preservation of Residual Hearing After Cochlear Implant Surgery With Deep Insertion Electrode Arrays. Otology and Neurotology, 2019, no. 40(4), рр. 373-380. https://doi.org/10.1097/MA0.0000000000002170


Review

For citations:


Egorov A.I., Glukhovskiy E.М., Tkachuk G.N. Investigation of Parameters and Improvement of MRT Compatibie Composite Magnet for Cochiear Implantation. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2021;11(1):21-35. (In Russ.)

Views: 78


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1536 (Print)