Algorithm for Tuning Fuzzy Inference in Medical Information Systems Based on Knowledge
https://doi.org/10.21869/2223-1536-2021-11-4-196-211
Abstract
The purpose of research is to improve the tuning of fuzzy inference in medical information systems based on knowledge.
Methods. The leading approach to the study of this problem is the adjustment of the rules of fuzzy inference systems based on the principles of the proportional-integral controller.
Results. The relevance of the study is due to the need to improve medical information systems by introducing artificial intelligence technologies. The key element of such systems is the decision inference mechanism, which implements logical inference from a pre-built base of facts and rules in accordance with the laws of formal logic. The efficiency of the decision inference mechanism essentially depends on the quality of its configuration. The article presents an algorithm for tuning Sugeno-type fuzzy inference systems, which allows adjusting the rules of fuzzy inference systems with minimizing the adjustment time and overshoot time, as well as the results of studying the dependence of the error and overshoot on the values of the integral and proportional components.
Conclusion. Development of an algorithm for tuning fuzzy logical inference in medical information systems based on knowledge, which minimizes the time of tuning decision rules and the time of their overshoot. The materials of the article are of practical value for improving knowledge-based information systems. The priorities for further research are the study of the dependence of the rate of adjustment of the decision rules on the form of the membership functions of the input variables and the value of the limiting factor of the integral component.
Keywords
About the Authors
M. S. GolosovskyРоссия
Mikhail S. Golosovsky, Cand. of Sci. (Engineering), Researcher
4 st. Lesoparkovaya, St. Petersburg 195043
A. B. Yudin
Россия
Andrey B. Yudin, Cand. of Sci. (Medical), Associate Professor, Head of the Research Testing Center
4 st. Lesoparkovaya, St. Petersburg 195043
V. R. Medvedev
Россия
Vladimir R. Medvedev, Cand. of Sci. (Medical), Associate Professor, Leading Researcher
4 st. Lesoparkovaya, St. Petersburg 195043
S. N. Vasyagin
Россия
Sergey N. Vasyagin, Cand. of Sci. (Medical),
Head of Department
E. V. Evtushenko
Россия
Evgeny V. Evtushenko, Cand. of Sci. (Engineering), Senior Lecturer
1a Dybenko str., Sevastopol 299028
References
1. Maksimov I. B., Stolyar V. P., Bogomolov A. V. Prikladnaya teoriya informatsionnogo obespecheniya mediko-biologicheskikh issledovanii [Applied theory of information support for biomedical research]. Moscow, Binom Publ., 2013. 312 p.
2. Ledeneva T. M., Podvalny S. L., Stryukov R. K., Degtyarev S. V. Nechetkoe modelirovanie meditsinskikh ekspertnykh sistem [Fuzzy modeling of medical expert systems]. Biomeditsinskaya radioelektronika = Biomedical Radioelectronics, 2016, no. 9, pp. 16-24.
3. Bykov A. V., Korenevsky N. A., Rodionova S. N., Artemenko M. V. Intellektual'naya podderzhka vybora skhem lechebnoi stabilizatsii pri sme-shannom ishemicheskom porazhenii [Intellectual support for the choice of therapeutic stabilization schemes for mixed ischemic lesions]. Meditsinskaya tekhnika = Medical Technology, 2020, no. 4 (322), pp. 49-52.
4. Pegat A. Nechetkoe modelirovanie i upravlenie [Fuzzy modeling and control]. Moscow, Binom. Knowledge Laboratory Publ., 2013. 798 p.
5. Manentia F., Rossia F., Goryunov A., Dyadik A., Kozin K., Nadezhdin I., Mikhalevich S. Fuzzy adaptive control system of a non-stationary plant with closed-loop passive identifier. Resource-Efficient Technologies, 2015, vol. 1, no. 1, pp. 10-18.
6. Ushakov I. B., Bukhtiyarov I. V., Soldatov S. K., Kukushkin Yu. A., Bogomolov A. V., Sipakov A. S. Prognosticheskie aspekty otsenivaniya riska zdorov'yu personala khimicheski opasnykh ob"ektov [Predictive aspects of assessing the health risk of personnel of chemically hazardous facilities]. Bezopasnost' zhiznedeyatel'nosti = Life Safety, 2009, no. 12 (108), pp. 2-7.
7. Al-Kasasbeh R. T., Korenevskiy N., Boiteova E., Alshamasin M. S., Ionescu F., Al-Kasasbeh E. Fuzzy prediction and early detection of stomach diseases by means of combined iteration fuzzy models. International Journal of Biomedical Engineering and Technology, 2019, vol. 30, no. 3, pp. 228-254.
8. Ledeneva T. M. O reshenii zadachi diagnostiki na osnove nechetkogo modelirovaniya [On the solution of the diagnostic problem based on fuzzy modeling]. Obozrenieprikladnoi i promyshlennoi matematiki = Review of Applied and Industrial Mathematics, 2011, vol. 18, no. 2, pp. 298-299.
9. Maistrou A. I., Bogomolov A. V. Technology of automated medical diagnostics using fuzzy linguistic variables and consensus ranking methods. World Congress on Medical Physics and Biomedical Engineering: Diagnostic and Therapeutic Instrumentation, Clinical Engineering. IFMBE Proceedings. Munich, 2009, pp. 38-41.
10. Kukushkin Yu., Vorona A., Bogomolov A., Chistov S. Risk-metriyс staff health facilities for the disposal of chemical weapons. Health Risk Analysis, 2014, no. 3, pp. 26-34.
11. Korenevskiy N. A., Krupchatnikov R. A., Gorbatenko S. A. Generation of fuzzy network models taught on basic of data structure for medical expert systems. Open Biomedical Engineering Journal, 2015, vol. 42, no. 2, pp. 67.
12. Ledeneva T. M., Moiseev S. A. Formalizatsiya svoistv interpretiruemykh lingvisticheskikh shkal i termov nechetkikh modelei [Formalization of properties of interpreted linguistic scales and terms of fuzzy models]. Prikladnaya informatika = Applied Informatics, 2012, no. 4 (40), pp. 126-132.
13. Kosko B. Fuzzy systems as universal aproximators. IEEE Transactions on Computers, 1994, vol. 43, no.11, pp. 1329-1333.
14. Kosko B. Global stability of generalized additive fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics. Part C: Applications and Reviews, 1998, vol. 28, no. 3, pp. 441-452.
15. Golosovsky M. S. [Algorithm for local tuning of systems of fuzzy logical inference of the Mamdani type with preservation of the interpretability of production rules]. Upravlenie bol'shimi sistemami. Sbornik trudov [Management of large systems. Collection of works]. Moscow, Institut problem upravleniya imeni V. A. Trapeznikova RAN Publ., 2018, pp. 6-22. (In Russ.)
16. Golosovsky M. S., Bogomolov A. V., Terebov D. S., Evtushenko E. V. Algoritm nastroiki sistemy nechetkogo logicheskogo vyvoda tipa Mamdani [Algorithm for tuning a fuzzy logical inference system of the Mamdani type]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Fizika = Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 2018, vol. 10, no. 3, pp. 19-29.
17. Kudinov Yu. I., Kelina A. Yu. Metody sinteza i nastroiki nechetkikh PID regulyatorov Mamdani [Methods of synthesis and tuning of fuzzy PID controllers Mamdani]. Informatsionnye tekhnologii = Information Technologies, 2012, no. 6, p. 32.
18. Kochergin E. V., Ledeneva T. M., Altukhov A. V. Ob odnom podkhode k approksimatsii funktsii s pomoshch'yu sistem Takagi-Sugeno [On one approach to approximating a function using Takagi-Sugeno systems]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyi analiz i informatsionnye tekhnologii = Bulletin of the Voronezh State University. Series: System Analysis and Information Technology, 2008, no. 2, pp. 72-79.
19. Golosovsky M. S., Bogomolov A. V., Evtushenko E. V. Algoritm nastroiki sistem nechetkogo logicheskogo vyvoda tipa Sugeno [Algorithm for tuning systems of fuzzy inference of the Sugeno type]. Nauchno-tekhnicheskaya informatsiya. Seriya. 2: Informatsionnye protsessy i sistemy = Scientific and Technical Information. Series. 2: Information Processes and Systems, 2021, no. 5, pp. 1-11.
20. Dagaeva M., Katasev A. Fuzzy rules reduction in knowledge bases of decision support systems by objects state evaluation. Studies in Systems, Decision and Control, 2021, vol. 338, pp. 113-123.
21. Katasev A. S. Neironechetkaya model' i programmnyi kompleks avtomatizatsii formirovaniya nechetkikh pravil dlya otsenki sostoyaniya ob"ektov [Neuro-fuzzy model and software package for automating the formation of fuzzy rules for assessing the state of objects]. Avtomatizatsiya protsessov upravleniya = Automation of Control Processes, 2019, no. 1 (55), pp. 21-29.
22. Bogomolov A. V., Gridin L. A., Kukushkin Yu. A., Ushakov I. B. Diagnostika sostoyaniya cheloveka: matematicheskie podkhody [Diagnostics of the human condition: mathematical approaches]. Moscow, Medicine Publ., 2003. 464 p.
23. Katasev A. S. Metody formirovaniya nechetkikh modelei otsenki sostoyaniya ob"ektov v usloviyakh neopredelennosti [Methods for the formation of fuzzy models for assessing the state of objects in conditions of uncertainty]. Matematicheskie metody v tekhnike i tekhnologiyakh = Mathematical Methods in Engineering and Technology, 2019, vol. 2,
24. pp. 111-118.
25. Golosovsky M. S., Bogomolov A. V., Balandov M. E. Algoritm nastroiki sistem nechetkogo logicheskogo vyvoda tipa Sugeno na osnove metoda blizhaishikh sosedei [Algorithm for tuning systems of fuzzy inference of the Sugeno type based on the method of nearest neighbors]. Matematicheskie metody v tekhnologiyakh i tekhnike = Mathematical Methods in Technology and Engineering, 2021, no. 6, pp. 108-112.
26. Tobin D. S., Golosovsky M. S., Bogomolov A. V. Tekhnologiya obespecheniya dostovernosti informatsii pri provedenii setevykh ekspertiz [Technology of ensuring the reliability of information during network examinations]. Sovremennye informatsionnye tekhnologii i IT-obrazovanie = Modern Information Technologies and IT Education, 2020, vol. 16, no. 3, pp. 623-632.
27. Katasev A. S. Тekhnologiya formirovaniya nechetkikh modelei otsenki sostoyaniya ob"ektov v usloviyakh neopredelennosti [Technology of formation of fuzzy models for assessing the state of objects in conditions of uncertainty]. Matematicheskie metody v tekhnike i tekhnologiyakh = Mathematical Methods in Engineering and Technology, 2020, vol. 4,
28. pp. 118-121.
Review
For citations:
Golosovsky M.S., Yudin A.B., Medvedev V.R., Vasyagin S.N., Evtushenko E.V. Algorithm for Tuning Fuzzy Inference in Medical Information Systems Based on Knowledge. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2021;11(4):196-211. (In Russ.) https://doi.org/10.21869/2223-1536-2021-11-4-196-211
JATS XML


