Preview

Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering

Advanced search

Fuzzy Mathematical Models for Predicting and Assessing the Severity of Carbon Monoxide Poisoning

Abstract

The purpose of the research is to improve the quality of classification of the severity of carbon monoxide poisoning through the use of hybrid fuzzy decision rules.

Methods. In the course of these studies, it was shown that modern approaches to classifying the severity of carbon monoxide poisoning are based on assessing the concentration of carbon monoxide in the air of the working area or carboxyhemoglobin in the blood, and there is a significant uncertainty zone between the studied classes of conditions, which reduces the quality of decisions made and makes it difficult to choose adequate treatment regimens In order to reduce the uncertainty zone, it is proposed to increase the number of severity classes and to adequately describe the uncertainty zones, use the methodology for the synthesis of hybrid fuzzy decision rules with a focus on models for assessing the health status of a person changing under the influence of exposure to harmful chemicals.

Results. Using the methodology of synthesis of hybrid fuzzy decision rules, we have obtained fuzzy mathematical models for the allocation of such classes of severity as normal, mild, medium, severe and critical degrees of poisoning with the confidence of decisions made no worse than 0.95, which allows us to accurately assess the health status of patients with the appointment of adequate prevention and treatment regimens.

Conclusion. In this paper, using the methodology of synthesis of hybrid fuzzy decision rules, fuzzy models of classification of the severity of carbon monoxide poisoning with the allocation of classes: normal, mild, medium, severe and critical poisoning are obtained. During the expert evaluation and mathematical modeling, it was shown that the diagnostic sensitivity, specificity and confidence in the decisions made exceeds the value of 0.95, which is a good practical result for this class of problems.

About the Authors

M. V. Shevtsov
Academy of State Fire Service of EMERCOM of Russia
Russian Federation

Maxim V. Shevtsov, Head of the Department of the Organization of Practices

 4 Galushkina str., Moscow 129366



L. V. Starodubtseva
Southwest State University
Russian Federation

Lilia V. Starodubtseva, Associate Professor of the Department of Technical Education

50 let Oktyabrya str. 94, Kursk 305040



R. I. Safronov
Kursk State Agricultural Academy named after I. I. Ivanov
Russian Federation

Ruslan I. Safronov, Сand. of Sci. (Engineering), Associate Professor of the Department of Electrical Engineering and Electric Power Engineering

70 K. Marx str., Kursk 305021



S. S. Sergeeva
Southwest State University
Russian Federation

Snezhana S. Sergeeva, Student of Department of Biomedical Engineering

50 let Oktyabrya str. 94, Kursk 305040



References

1. Kutsenko S. A. Osnovy toksikologii [Fundamentals of toxicology]. St. Petersburg, IZDATEL Folio Publ., 2004, рр. 550-551.

2. Zobnin V., Savvateeva-Lyubimova T. N., Kovalenko A. N., Petrov A. Yu., Vasil'ev S. A., Batotsyrenov B. V. Romantsov M. G. Otravlenie monooksidom ugleroda (ugarnym gazom) [Poisoning with carbon monoxide (carbon monoxide)]; ed. by Yu. V. Zobnina. St. Petersburg, Tactics-Studio Publ., 2011. 80 p.

3. Ostapenko Yu. N. Otravlenie avariino khimicheski opasnymi veshchestvami [Poisoning with emergency chemically dangerous substances]. Meditsinskaya toksikologiya: natsion- al'noe rukovodstvo [Medical toxicology: National Guidelines]; ed. by E. A. Luzhnikov. Moscow, GEOTR-Media Publ., 2012, pp. 669-684.

4. Meditsinskaya toksikologiya: natsional'noe rukovodstvo [Medical toxicology: national guidelines]; ed. by E. A. Luzhnikova. Moscow, GEOTAR-Media Publ., 2012. 928 p.

5. Toksicheskoe deistvie okisi ugleroda Federal'nye klinicheskie rekomendatsii [Toxic effect of carbon monoxide: federal clinical recommendations]; ed. by Yu. N. Ostapenko. Moscow, 2013. Available at: http://www.mzdrav.rk.gov.ru. (accessed 04.06.2021)

6. Korenevsky N. A., Rodionova S. N., Khripina I. I. Metodologiya sinteza gibridnykh nechetkikh reshayushchikh pravil dlya meditsinskikh intellektual'nykh sistem podderzhki prinyatiya reshenii [Methodology of synthesis of hybrid fuzzy decision rules for medical intelligent decision support systems]. Stary Oskol, TNT Publ., 2019. 472 p.

7. Korenevsky N. A. Ispol'zovanie nechetkoi logiki prinyatiya reshenii dlya meditsinskikh ekspertnykh sistem [The use of fuzzy decision-making logic for medical expert systems]. Meditsinskaya tekhnika = Medical Equipment, 2015, no. 1 (289), pp. 33-35.

8. Korenevsky N. A., Razumova K. V. Sintez nechetkikh klassifikatsionnykh pravil v mnogomernom prostranstve priznakov dlya meditsinskikh prilozhenii [Synthesis of fuzzy classification rules in a multidimensional feature space for medical applications]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Management, Computer Engineering, Computer Science. Medical Instrumentation, 2012, no. 2-1, pp. 223-227.

9. Korenevsky N. A., Tutov N. D., Lazurina L. P. Proektirovanie mediko-ekologicheskikh informatsionnykh sistem [Design of medical and environmental information systems]. Kursk, Kursk State Technical University Publ., 2001. 193 p.

10. Korenevsky N. A., Ivankov Yu. A., Yakovleva E. A., Savchenko N. N. Sintez nechetkikh reshayushchikh pravil dlya prognozirovaniya i rannei diagnostiki zabolevanii, vyzyvaemykh sostoyaniem okruzhayushchei sredy, s uchetom indivdual'nykh osobennostei organizma [Synthesis of fuzzy decision rules for predicting and early diagnosis of diseases caused by the state of the environment, taking into account the individual characteristics of the body]. Sistemnyi analiz i upravlenie v biomeditsinskikh sistemakh = System Analysis and Management in Biomedical Systems, 2007, vol. 6, no. 2. pp. 395-400.

11. Korenevsky N. A., Kopteva N. A., Krupchatnikov R. A. Prognozirovanie i rannyaya diagnostika zabolevanii sel'skokhozyaistvennykh rabochikh na osnove nechetkoi logiki prinyatiya reshenii [Forecasting and early diagnosis of diseases of agricultural workers on the basis of fuzzy logic of decision-making]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Voronezh State Technical University, 2008, vol. 4, no. 7, pp. 86-89.

12. Korenevsky N. A., Bashir A. S., Gorbatenko S. A. Sintez gibridnykh nechet-kikh pravil dlya prognozirovaniya, otsenki i upravleniya sostoyaniem zdorov'ya v eko-logicheski neblagopriyatnykh regionakh [Synthesis of hybrid fuzzy rules for forecasting, assessment and management of health status in environmentally unfavorable regions]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Management, Computer Engineering, Computer Science. Medical Instrumentation, 2013, no. 4, pp. 69-73.

13. Korenevsky N. A. Application of Fuzzy Logic for Decision-Making in Medical Expert Systems. Biomedical Engineering, 2015, vol. 49, pp. 46-49.

14. Korenevsky N. A., Grigorov I. Yu., Govorukhina T. N., Krupchatnikov R. A. Metod sinteza nechetnykh modelei i rannei diagnostiki professional'nykh zabolevanii rabotnikov gal'vanicheskikh proizvodstv [Method of synthesis of odd models and early diagnosis of occupational diseases of electroplating production workers]. Sistemnyi analiz i upravlenie v biomeditsinskikh sistemakh = System Analysis and Management in Biomedical Systems, 2019, vol. 18, no. 3, pp. 163-169.

15. Stepashov R. V. Metod, modeli i algoritm prognozirovaniya i rannei diagnostiki professional'nykh zabolevanii rabotnikov agropromyshlennogo kompleksa, kontaktiruyushchikh s yadokhimikatami, na osnove gibridnykh nechetkikh tekhnologii. Diss. kand. tekh. nauk [Method, models and algorithm for forecasting and early diagnosis of occupational diseases of agricultural workers in contact with pesticides, based on hybrid fuzzy technologies. Cand. techn. sci. diss.]. Kursk, 2018. 144 p.

16. Lukashov M. I., Korenevsky N. A., Eremin A. V. Opredelenie urovnya dlitel'nogo fizicheskogo utomleniya kak faktora riska retsidivov khronicheskikh zabolevanii [Determination of the level of prolonged physical fatigue as a risk factor for relapses of chronic diseases]. Biomeditsinskaya radioelektronika = Biomedical Radioelectronics, 2009, no. 5, pp. 10-15.

17. Korenevsky N. A., Korostelev A. N., Starodubtseva L. V., Serebrovsky V. V. Metod otsenki funktsional'nogo rezerva cheloveka-operatora na osnove kombinirovannykh pravil nechetkogo vyvoda [Method of assessing the functional reserve of a human operator based on combined rules of fuzzy inference]. Biotekhnosfera = Biotechnosphere, 2012, no. 1 (19), pp. 44-49.

18. Korenevsky N., Al-Kasasbeh Riad Taha, Ionescu F., Alshamasin M., Smith Anrev P. Fuzzy definition of the psychoemotional level of a person. Mega-conference on biomedical engineering. Materials of the 4th International Conference on the development of biomedical engineering. Ho Chi Minh City, 2012, pp. 354-357.

19. Korenevsky N. A., Al-Kasasbeh R. T., Ioneskuk F., Alshamasin M., Alkasasbe E., Smith A. P. Fuzzy determination of the level of a person's psychoemotional. Proceedings of IFMBE, 2013, vol. 40, IFMBE, pp. 213-216.

20. Al-Kasasbeh R., Alshamasin M., Korenevsky N., Kuzmin A., Ionescu F. Synthesis of fuzzy logic for forecasting and medical diagnostics based on the energy characteristics of acupuncture point. Journal of Acupuncture and Meridian Research, 2011, vol. 4, no. 3, pp. 175182.

21. Bunyaev V. V., Korenevsky N. A. Metody poiska informativnykh proektsionnykh zon i sinteza nechetkikh reshayushchikh pravil dlya refleksodiagnostiki [Methods of searching for informative projection zones and synthesis of fuzzy decision rules for reflexology]. Sistemnyi analiz i upravlenie v biomeditsinskikh sistemakh = System Analysis and Management in Biomedical Systems, 2004, vol. 3, no. 3, pp. 175-178.


Review

For citations:


Shevtsov M.V., Starodubtseva L.V., Safronov R.I., Sergeeva S.S. Fuzzy Mathematical Models for Predicting and Assessing the Severity of Carbon Monoxide Poisoning. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2021;11(3):180-197. (In Russ.)

Views: 130


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1536 (Print)