The Structure of the Receiving Path of the Automatic Dependent Surveillance-Broadcast Message Processing Module
Abstract
The purpose of the research is to study and search for options for the structure of the receiving path of the automatic dependent surveillance-broadcast message system.
Research methods are based on structural-parametric synthesis of measuring and computing facilities. Variants of the architecture of automatic dependent surveillance-broadcasting systems with a detailed composition of the receiving, converting and processing parts have been created. The study of the options for the scheme of the receiving path of the electronic module for receiving messages of automatic dependent observation-broadcasting showed that the best (in terms of gain) is the option with a sequential two-stage "gain-filtering" part, and the most reliable (in terms of the operating voltage level) is the option with an integrated processing circuit signal.
Results. Small astronautics is one of the most promising areas for the development of high-tech products. Small spacecraft as autonomous research mini-laboratories or robotic systems are used to solve problems of remote sensing of the Earth, organize space communication systems, conduct scientific experiments in space, etc. one area, the functions of which are expanded through the use of small spacecraft as additional transmitting and receiving means. Operating in an orbit of 400-500 km, a grouping of small spacecraft provides reception of messages of automatic dependent observation-broadcasting and their further processing in order to highlight the flight characteristics of aircraft (coordinates, speed, course, altitude, etc.). The obtained variants allow us to detail the architecture of the module and the structure of the receiving path, depending on the selected target indicators (gain coefficients, signal-to-noise ratio, application power).
Conclusion. The analysis of the module architecture options made it possible to detail the structural organization of the electronic module for receiving messages as part of the blocks for receiving, digitizing the signal and decrypting ADS-B messages. It is show, that the most critical block of signal reception should be evaluated in terms of gain, signal / noise, application power).
About the Authors
E. А. TitenkoRussian Federation
Evgeny А. Titenko, Cand. of Sci. (Engineering), Associate Professor, Associate Professor of the Department of Information Systems and Technologies
50 Let Oktyabrya str. 94, Kursk 305040
A. N. Shchitov
Russian Federation
Alexey N. Shchitov, Post-Graduate Student
50 Let Oktyabrya str. 94, Kursk 305040
A. P. Loktionov
Russian Federation
Askold P. Loktionov, Dr. of Sci. (Engineering), Member of the Dissertation Council D212.105.02
50 Let Oktyabrya str. 94, Kursk 305040
A. E. Arkhipov
Russian Federation
Alexander E. Arkhipov, Cand. of Sci. (Engineering), Leading Researcher
50 Let Oktyabrya str. 94, Kursk 305040
B. А. Shiyanov
Russian Federation
Boris А. Shiyanov, Dr. of Sci. (Engineering), First Vice-Rector
29 B Solnechnaya str., Voronezh 394026
A. G. Yashin
Russian Federation
Aleksey G. Yashin, Chief Designer of Special Projects
47 Zapolnaya str., Kursk 305040
References
1. Milenin D. V., Oleinikov E. P. [The new state and prospects for the development of small spacecraft]. Reshetnevskii chteniya. Materialy XXIII Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi pamyati general'nogo konstruktora raketno-kosmicheskikh sistem akademika M. F. Reshetneva [Reshetnevsky readings. Materials of the XXIII International Scientific and Practical Conference dedicated to the memory of the general designer of rocket and space systems Academician M. F. Reshetnev]; ed. By Yu. Yu. Loginova. Krasnoyarsk, Sibirskii gosudarstvennyi universitet nauki i tekhnologii imeni akademika M. F. Reshetneva Publ., 2019, pp. 410-411. (In Russ.)
2. Frolov S., Chadrina O., Titenko E., Shitov A., Andrey Kh., Dmitry T. Development of a method to determine the location of a nanosatelite using ADS-B. Revista Tecnica de la Facultadde Ingenieria Universidaddel Zulia, 2020, vol. 43, no. S1, pp. 48-55.
3. Atakishchev O. I., Shilenkov E. A., Frolov S. N., Titenko E. A., Shchitov A. N., Zarubin D. M. Avtonomnaya intellektual'naya gruppirovka malykh kosmicheskikh apparatov - kosmicheskii eksperiment "Radioskaf-5" [Autonomous intelligent constellation of small spacecraft - space experiment "Radioskaf-5"]. Izvestiya Instituta inzhenernoifiziki = Proceedings of the Institute of Engineering Physics, 2020, no. 1 (55), pp. 42-48.
4. Shilenkov E. A., Frolov S. N., Zarubin D. M., Gorbunov A. A., Dobroserdov D. G., Shchitov A. N., Titenko E. A., Silchenko R. Strukturnaya skhema modulya opredeleniya mestopolozheniya malykh kosmicheskikh apparatov [The block diagram of the module to determine the location of small spacecraft]. T-Comm: Telekommunikatsii i transport = T-Comm: Telecommunications and Transport, 2021, vol. 15, no. 4, рр. 28-34.
5. Maltsev G. N., Kozinov I. A., Fateev V. F. Metody vybora naibolee informativnykh spektral'nykh kanalov pri distantsionnom zondirovanii Zemli s malykh kosmicheskikh apparatov [Methods for selecting the most informative spectral channels for remote sensing of the Earth from small spacecraft]. Izvestiya vuzov. Priborostroenie = News Universities. Instrumentation, 2007, vol. 50, no. 6, pp. 23-31.
6. Shchitov A. N., Titenko E. A., Sizov A. S. [Model for calculating the coordinates of a small spacecraft based on sensors of moving objects]. Intellektual'nye sistemy 4-i promyshlennoi revolyutsii. Sbornik materialov III Mezhdunarodnogo foruma [Intelligent systems of the 4th industrial revolution. Collection of materials of the III International Forum]; ed. by V. I. Syryamkina. Tomsk, 2020, pp. 53-57. (In Russ.)
7. Duga V. V., Mosin D. A., Polekhin A. A. K voprosu o razvitii napravleniya malykh kosmicheskikh apparatov [On the development of the direction of small spacecraft]. Aviakosmicheskoe priborostroenie = Aviation and Space Instrument Engineering. 2020, no. 10, pp. 26-33.
8. Samburov S. N., Artemiev O. G., Shilenkov E. A., Frolov S. N., Titenko E. A., Shchitov A. N. [The results of the 5 th stage of the "Radioscap" space experiment]. Pyat'desyat pyatye Nauchnykh chtenii pamyati K. E. Tsiolkovskogo [Fifty-fifth scientific readings in memory of K. E. Tsiolkovsky]. Kaluga, 2020, pp. 192-196. (In Russ.)
9. Knizhnikov Yu. F., Kravtsova V. I., Tutubalina O. V. Aerospace methods of geographical research [Aerospace methods of geographical research]. Moscow, Academy Publ., 2004. 182 p.
10. Titenko E. A., Frolov S. N., Shchitov A. N., Shchitova E. N. [Mathematical model for determining the location of a cubesat nanosatellite]. Infokommunikatsii i kosmicheskie tekhnologii: sostoyanie, problemy i puti resheniya. Sbornik nauchnykh statei IV Vserossiiskoi nauch.-prakt. konf. [Infocommunications and space technologies: status, problems and solutions. Collection of scientific articles of the IV All-Russian Scientific and Practical Conference]. Kursk, Southwest State University Publ., 2020, pp. 107-112. (In Russ.)
11. Freire Carrera F., Shilenkov E., Titenko E., Frolov S., Shitov A. Mathematical model of the earth's magnetic anomalies. Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia, 2020, vol. 43, no. S1, pp. 35-39.
12. Dovbnya V. G., Frolov S. N., Sulima K. P., Shchitov A. N. Spetsifika realizatsii kompleksov upravleniya na baze tekhnologii LORAWAN [Specificity of realizations of control complexes based on LORAWAN technology]. T-Comm: Telekommunikatsii i transport = T-Comm: Telecommunications and Transport, 2020, vol. 14, no. 9, рр. 24-30.
13. Medova L. R., Rybin P. S., Filatov I. V. Ob odnoi sisteme svyazi dlya malykh kosmicheskikh apparatov nanoklassa [On one communication system for small nanoclass spacecraft Informatsionnye protsessy = Information Processes, 2018, vol. 18, no. 1, pp. 72-79.
14. Borzov D. B., Masyukov I. I., Titenko E. A. Methods of critical systems reconfiguration. 2018 International Russian Automation Conference. RusAutoCon 2018. Sochi, IEEE, 2018, p. 8501613.
15. Zakharenkov A. I., Teterin D. P., Dobroserdov O. G., Titenko E. A., Frolov S. N., Shchitov A. N., Peredelsky G. I. Model' i algoritm vychisleniya koordinat letal'nykh apparatov na osnove datchikov mestopolozheniya [Model and Algorithm for Calculating the Coordinates of Flying Vehicles Based on Location Sensors]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2019, vol. 9, no. 4 (33), pp. 163-180.
16. Mukhin I. E., Shilenkov E. A. Metod parametricheskogo sinteza antenno-fidernykh, radiopriemnykh i demodulyatornykh sredstv signal'no-priemnogo trakta sovremennykh sistem telekommunikatsii [Method of parametric synthesis of antenna-feeder, radio-receiving and demodulator means of signal-receiving path of modern telecommunication systems]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2012, no. 2-3, pp. 110-115.
17. Vorobiev K. A., Kosilov I. S., Lobov E. M., Shilenkov E. A. Shirokopolosnye mnogochastotnye signal'no-kodovye konstruktsii dlya peredachi informatsii cherez ionosfernyi kana [Broadband multifrequency signal-code constructions for transmitting information through the ionospheric channel]. Izvestiya Yugo-Zapadnogo gosudarstven-nogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2012, no. 2-3, pp. 41-46.
18. Abdurakhimov A. A., Levadovich A. V., Mosin D. A., Severenkov A. V. Metodika obosnovaniya parametrov orbity i kharakteristik dvigatel'noi ustanovki malogo kosmicheskogo apparata distantsionnogo zondirovaniya Zemli ovaniyakh [The method of substantiating the orbit parameters and characteristics of the propulsion system of a small spacecraft for remote sensing of the Earth]. Naukoemkie tekhnologii v kosmicheskikh issled = Science-Intensive Technologies in Space Research of the Earth, 2019, vol. 11, no. 2, pp. 73-86.
19. Leonidov N. V., Mitina M. V. Obraz nizkoorbital'nogo dopolneniya k orbital'noi gruppirovke sistemy GLONASS [An image of a low-orbit addition to the orbital constellation of the GLONASS system]. Izmerenie. Monitoring. Upravlenie. Kontrol' = Measurement. Monitoring. Control. Diagnostics, 2021, no. 2 (36), pp. 66-70.
20. Golyakov A. D., Richnyak A. M. Tochnost' avtonomnoi navigatsii vzaimnym metodom pri gruppovom polete malykh kosmicheskikh apparatov [Accuracy of autonomous navigation by mutual method in group flight of small spacecraft]. VestnikSamarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie = Bulletin of Samara University. Aerospace Engineering, Technology and Mechanical Engineering, 2018, vol. 17, no. 2, pp. 47-57.
Review
For citations:
Titenko E.А., Shchitov A.N., Loktionov A.P., Arkhipov A.E., Shiyanov B.А., Yashin A.G. The Structure of the Receiving Path of the Automatic Dependent Surveillance-Broadcast Message Processing Module. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2021;11(3):102-120. (In Russ.)