Algorithm for Quasi-Stationary Measurement Data Aggregation of Sensor Nodes
Abstract
Purpose of research. Wireless sensor networks are actively developing and perspective direction in the information and communication field. Computational complexity optimization of data processing algorithms for wireless sensor network devices is still an important scientific and technical problem. This article is devoted to an algorithm that realized the method of intelligent quasi-indifferent data aggregation for decentralized devices - sensor nodes. The aim of the study is to further aggregation technologies improvement in wireless sensor networks by creating the new algorithm for quasi-stationary measurement data aggregation of sensor nodes. The developed algorithm ensures efficient quasistationary measurement data aggregation of sensor nodes by presenting this data in the form of the parabolic regression model coefficients vectors and combining them into groups based on the dynamic variations correlation of the recorded parameters, also takes into account undefined values and outliers in data segments and implements their elimination.
Methods. Methods of algorithms theories, probability theory, mathematical statistics, calculations in terms of complexity theory and technical calculations application software Matlab were used in the study during the theoretical research and algorithm development.
Results. The algorithm for quasi-stationary measurement data aggregation of sensor nodes that allows to reduce their volume when transmitting via wireless communication channels is developed. The practical significance of the developed algorithm lies in implementing the proposed theoretical and algorithmic structures to a level of programs.
Conclusion. The developed algorithm ensures efficient aggregation by presenting quasi-stationary measurement data of sensor nodes in the form of the parabolic regression model coefficients vectors, minimizes temporal and spatial correlations of data on the receiving side, eliminates undefined values and outliers in data segments exceeding three average absolute deviations.
About the Authors
A. M. PavlovRussian Federation
Aleksey M. Pavlov, Assistant of the Department of Software and Information Systems Administration
33 Radischeva str., Kursk 305000
V. A. Kudinov
Russian Federation
Vitaliy A. Kudinov, Dr. of Sci. (Pedagogic), Professor, Professor of the Department of Software and Information Systems Administration
33 Radischeva str., Kursk 305000
References
1. Nurilloev I. N. Razrabotka i issledovanie metodov obespecheniya svyaznosti v be- sprovodnyh sensornyh setyah. Diss. kand. tekhn. nauk [Development and Research of Methods for Ensuring Connectivity in Wireless Sensor Networks. Cand. techn. sci. diss.]. St. Petersburg, 2018. 170 p.
2. Zabarin M. A., Ponomarchuk Yu. V. Tekhnologii geterogennyh besprovodnyh sensornyh setej s ispol'zovaniem bespilotnyh letatel'nyh apparatov pri reshenii poiskovyh zadach i likvidacii posledstvij chrezvychajnyh situacij [Technologies of Heterogeneous Wireless Sensor Networks Using Unmanned Aerial Vehicles in Solving Search Problems and Eliminating the Consequences of Emergency Situations]. Vestnik rossijskogo novogo universiteta. Seriya: Slozhnye sistemy: modeli, analiz i upravlenie = News of the Russian New University. Series: Complex Systems: Models, Analysis and Control, 2019, no. 4, pp. 94-100.
3. Shahov V. V., Strelnikov V. E., Nguen Van Dyuk. K voprosu ob effektivnosti besprovodnyh sensornyh setej [On the Question of the Effectiveness of Wireless Sensor Networks]. Problemy informatiki = Problems of Informatics, 2014, no. 2, pp. 28-38.
4. Golubnichaya E. Yu. [Data aggregation in Wireless Sensor Monitoring Networks]. Problemy peredachi informatsii v infokommunikatsionnyh sistemah. Spornik dokladov i tesisov XIII Vserossijskoy nauchno-prakticheskoy konferentsii [Problems of Information Transfer in Infocommunication Systems. Materials of the XIII All-Russian Scientific and Practical Conference]. Volgograd, Volgograd State University Publ., 2017, pp. 37-42. (In Russ.)
5. Voronuhin M. E. Analiz vychislitelnoj slozhnosti algoritmov optimizacii [Analysis of the Computational Complexity of Optimization Algorithms]. Nauka i obrazovanie transportu = Science and Education for Transport, 2018, no. 2, pp. 19-23.
6. Kolchin M. A., Shilin I. A., Klimov N. V., Garajzuev D. S., Muromcev D. I., Zakolda- ev D. A. Metod agregacii i normalizacii dannyh geterogennoj sensornoj seti [Aggregation and Normalization Method for Heterogeneous Sensor Network Data ]. Izvestiya vysshih uchebnyh zavedenij. Priborostroenie = Proceedings News of Higher Education Institutions. InstrumentMaking Industry, 2015, vol. 58, no. 11, pp. 945-951. https://doi.org/10.17586/0021-3454- 2015-58-11-945-951
7. Al'-Kadami N. A. Ocenka i sravnitel'nyj analiz algoritmov marshrutizacii dlya go- mogennyh i geterogennyh besprovodnyh sensornyh setej [Assessment and Comparative Analysis of Routing Algorithms for Homogeneous and Heterogeneous Wireless Sensor Networks]. Informacionnye tekhnologii i telekommunikacii = Information Technology and Telecommunications, 2014, vol. 8, no. 4, pp. 4-22.
8. Polyakov V. S., Polyakov S. V., Avdeyuk O. A., Naumov V. Yu., Pavlova E. S., Skvorcov M. G. Razvitie grafovyh i matrichnyh sposobov predstavleniya algoritmov [Development of Graph and Matrix Ways of Representing Algorithms]. Inzhenernyj vestnik Dona = Engineering Don Proceedings, 2017, no. 2, p. 8.
9. Kormen T., Lejzerson Ch., Rivest R., Shtajn K. Algoritmy. Postroenie i analiz [Algorithms. Construction and Analysis]. 3rd ed. Moscow, Williams Publ., 2013. 1324 p.
10. Kovarcev A. N., Danilenko A. N. Algoritmy i analiz slozhnosti [Algorithms and Complexity Analysis]. Samara, Samara State University Publ., 2018. 128 p.
11. Aho A. V., Hopcroft J. E., Ullman J. D. The Design and Analysis of Computer Algorithms. Massachusetts, Addison-Wesley Publishing Company, 1974. 479 p.
12. Greene D. H., Knuth D. E. Mathematics for the Analysis of Algorithms. Boston, Birkhauser, 1982. 120 p.
13. Draper N., Smith H. Applied Regression Analysis. 3rd ed. Canada, John Wiley & Sons, 1998. 912 p.
14. Hastie T., Tibshirani R., Friedman J. H. The Elements of Statistical Learning. 2nd ed. New York, 2009. 745 p.
15. Chi-Lun Cheng, John W. Van Ness. Statistical Regression with Measurement Error: Kendall’s Library of Statistics 6. 1st ed. Canada, Wiley & Sons, 2010. 282 p.
16. Pavlov A. M. Programma approksimacii dannyh besprovodnyh sensornyh uzlov kusochno-polinomial'noj regressiej [Program for Approximating Data of Wireless Sensor Nodes by Piecewise Polynomial Regression]. Certificate of State Registration of a Computer Program RF, no. 2021611364, 2021.
17. Pavlov A. M. Programma intellektual'nogo kvaziindifferentnogo agregirovaniya dannyh v besprovodnyh sensornyh setyah [The Program of Intelligent Quasi-Indifferent Data Aggregation in Wireless Sensor Networks]. Certificate of State Registration of a Computer Program RF, no. 2020666390, 2020.
18. Pavlov A. M. Programma ocenki energoeffektivnosti agregirovaniya dannyh v besprovodnyh sensornyh setyah [Program for assessing the energy efficiency of data aggregatio in wireless sensor networks]. Certificate of State Registration of a Computer Program RF, no. 2021610705, 2021
Review
For citations:
Pavlov A.M., Kudinov V.A. Algorithm for Quasi-Stationary Measurement Data Aggregation of Sensor Nodes. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2021;11(3):34-47. (In Russ.)