Preview

Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering

Advanced search

Mobile System for Monitoring, Early Detection and Assessment of Fire Danger

Abstract

The purpose of the research is to develop recommendations for the use of mobile platforms for monitoring, early detection and assessment of fire danger based on the use of heterogeneous information about the state of the object of study and modern information and intelligent technologies that improve the quality of decisions about the fire situation.

Research methods. To assess the nature and type of fires, it is proposed to use sensors of electromagnetic fields generated by the flame, in combination with sensors of chemicals and burning temperature. Neural networks and hybrid fuzzy decision rules are used to synthesize mathematical models for assessing the fire situation and predicting and evaluating the condition of people in the fire zone.

Results. In the course of the conducted research, a range of the main tasks solved by mobile platforms interacting with automated operator workstations was formulated. The types of registered signals in the controlled zones are selected and recommendations for the selection of the element base of mobile platforms are formed. Recommendations are given for the synthesis of decisive rules for assessing the fire situation, forecasting and assessing the condition of people in the fire zone. An example of the classification of smoldering and open flames is given.

Conclusion. In the course of the conducted research, a list of tasks solved by mobile platforms during monitoring, early detection and assessment of fire danger was determined. It is shown that as a basic system of fire situation sensors, sensors of electromagnetic fields of the ultraviolet, optical and infrared range should be used in combination with sensors of temperature and chemical composition of substances in the area of ignition. It is advisable to select the composition of sensors and synthesize the decisive rules for classifying the type and nature of fires using modern mathematical methods, information and intelligent technologies.

About the Authors

M. V. Shevtsov
Academy of the State Fire Service of the EMERCOM of Russia
Russian Federation

Maxim V. Shevtsov, Head of the Department of the Organization of Practices

4 Galushkina str., Moscow 129366



V. V. Aksenov
Southwest State University
Russian Federation

Vitaliy V. Aksenov, Head of Laboratories of the Department of Biomedical Engineering

50 let Oktyabrya str., 94, Kursk 305040



R. I. Safronov
Kursk State Agricultural Academy named after I. I. Ivanov
Russian Federation

Ruslan I. Safronov, Сand. of Sci. (Engineering), Associate Professor of the Department of Electrical Engineering and Electric Power Engineering

70 K. Marx str., Kursk 305021



L. V. Shulga
Southwest State University
Russian Federation

Leonid V. Shulga, Dr. of Sci. (Medical), Professor 

50 let Oktyabrya str., 94, Kursk 305040



S. V. Degtyarev
Southwest State University
Russian Federation

Sergey V. Degtyarev, Dr. of Sci. (Engineering), Professor

50 let Oktyabrya str., 94, Kursk 305040



References

1. Polyakov R. Yu., Efimov S. V., Yacun S. F. Metod rannego obnaruzheniya pozhara s pomoshch'yu mobil'nyh gazovyh pozharnyh izveshchatelej [Method for early fire detection with a mobile gas fire detectors]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2017, no. 1 (70), pp. 81-89.

2. Titov D. V., Emel'yanov S. G., Trufanov M. I. Bystrodejstvuyushchaya sistema tekhnicheskogo zreniya dlya poiska i opredeleniya harakteristik ochaga vozgoraniya [Highspeed vision system to locate and determine the characteristics of fire]. Izvestiya VUZov. Priborostroenie = Proceedings VUZov. Instrumentation, 2012, no. 2, pp. 40-43.

3. Emel'yanov S. G., Trufanov M. I., Titov D. V. Ustrojstvo raspoznavaniya vozgoraniya na osnove dvual'ternativnyh klassifikatorov [The Recognizer fire-based classifiers dalterna- tive]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 1-1 (40), pp. 10-13.

4. Titov D. V. Razrabotka i issledovanie metodov, algoritmov i tekhnicheskih sredstv obrabotki spektrozonal'nyh izobrazhenij. Diss. dokt. tekhn. nauk [Development and research of methods, algorithms, and hardware processing multispectral images. Dr. techn. sci. diss.]. Kursk, 2018. 325 p.

5. Yacun S. F., Korenevskij N. A., Efimov S. V., Korovin E. N. Avtomatizirovannaya sistema kontrolya okruzhayushchej sredy i ocenki sostoyaniya lyudej v usloviyah chrezvy- chajnyh situacij s ispol'zovaniem letayushchego robota [Automated system for monitoring the environment and assessing the condition of people in emergency situations using a flying robot]. Medicinskaya tekhnika = Biomedical Engineering, 2018, no. 4, pp. 52-54.

6. Reznikov V. M., Onishchenko Yu. A., Shchegolkova V. V. Sposob monitoringa pozharnoi obstanovki [A method for monitoring the fire situation]. Patent RF, no. 2359319, 2010.

7. Minin I. V., Logachev V. G. Metodika obnaruzheniya vozgoraniya s ispol'zovaniem Cifrovoj obrabotki izobrazheniya [Method of fire detection using digital image processing] Fundamentalnye issledovaniya = Fundamental Research, 2016, no. 6-2, pp. 299-307.

8. Denisov M. S., Kozhevin A. S., Chalyj V. S. Raspoznavanie istochnikov otkrytogo ognya na rannih stadiyah pozhara s pomoshch'yu videodetektora [Recognition of open fire sources in the early stages of a fire using a video detector]. Sovremennye tekhnologii obespech- eniya grazhdanskoj oborony i likvidacii posledstvij chrezvychajnyh situacij = Modern Technologies for Ensuring Civil Defense and Eliminating the Consequences of Emergency Situations, 2014, no. 1 (5), pp. 93-94.

9. Korenevskij N. A. Metod sinteza geterogennyh nechetkih pravil dlya analiza i uprav- leniya sostoyaniem biotekhnicheskih system [Method of synthesis of heterogeneous fuzzy rules for the analysis and control of the state of biotechnical systems]. Izvestiya Yugo-Zapad- nogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informat- ika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Management, Computer Engineering, Computer Science. Medical Instrumentation, 2013, no. 2, pp. 99-103.

10. Korenevskij N. A. Ispol'zovanie nechetkoj logiki prinyatiya reshenij dlya medicinskih ekspertnyh system [The use of fuzzy logic of decision-making for medical expert systems] Medicinskaya tekhnika = Biomedical Engineering, 2015, no. 1, pp. 33-35.

11. Korenevskij N. A., Shutkin A. N., Gorbatenko S. A., Serebrovskij V. I. Ocenka i upravlenie sostoyaniem zdorov'ya obuchayushchihsya na osnove gibridnyh intellektual'nyh tekhnologij [Assessment and management of students ' health status based on hybrid intelligent technologies]. Staryj Oskol, TNT Publ., 2016. 472 p.

12. Korenevskij N. A., Razumova K. V. Sintez kollektivov gibridnyh nechetkih modelej ocenki sostoyaniya slozhnyh system [Synthesis of teams of hybrid fuzzy models for assessing the state of complex systems]. Naukoemkie tekhnologii = High-tech Technologies, 2014, vol. 15, no. 12, pp. 31-39.

13. Korenevskij N. A., Rodionova S. N., Hripina I. I. Metodologiya sinteza gibridnyh nechetkih reshayushchih pravil dlya medicinskih intellektual'nyh sistem podderzhki prinyatiya reshenij [Methodology of synthesis of hybrid fuzzy decision rules for medical intelligent decision support systems]. Staryj Oskol, TNT Publ., 2019. 472 p.

14. Korenevskij N. A., Serebrovskij V. I., Stepashov R. V., Govoruhina T. N. Ispol'zovanie tekhnologii myagkih vychislenij dlya prognozirovaniya i diagnostiki professional'nyh zabolevanij rabotnikov agropromyshlennogo kompleksa [The use of soft computing technology for predicting and diagnosing occupational diseases of agricultural workers]. Kursk, Kursk State Agricultural Academy named after I. I. Ivanov Publ., 2016. 224 p.

15. Grigorov I. Yu. Metody i sredstva prognozirovaniya i rannej diagnostiki profession- al'nyh zabolevanij rabotnikov gal'vanicheskih proizvodstv na osnove nechetkih modelej prinyatiya reshenij. Diss. dokt. tekhn. nauk [Methods and means of forecasting and early diagnosis of occupational diseases of electroplating production workers based on fuzzy decisionmaking models. Dr. techn. sci. diss.]. Kursk, 2020. 147 p.

16. Rodionova S. N., Aksenov V. V., Mednikov D. A., Safronov R. I. Matematicheskie modeli prognozirovaniya i rannej diagnostiki bronhial'noj astmy u rabotnikov, kontaktiruyushchih s promyshlennymi yadohimikatami [Mathematical models of forecasting and early diagnosis of bronchial asthma in workers in contact with industrial pesticides]. Izvestiya Yugo- Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, in- formatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: Management, Computer Engineering, Computer Science. Medical Instrumentation, 2021, no. 1, pp. 130-144.


Review

For citations:


Shevtsov M.V., Aksenov V.V., Safronov R.I., Shulga L.V., Degtyarev S.V. Mobile System for Monitoring, Early Detection and Assessment of Fire Danger. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2021;11(3):8-25. (In Russ.)

Views: 260


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1536 (Print)