Computer Аssessment of the Risk of Нerniated Protrusions of the lntervertebral Discs of the Neck Based on MRl Data
https://doi.org/10.21869/2223-1536-2024-14-1-148-160
Abstract
The purpose of the research is assessment of the risk of herniated protrusions of intervertebral discs C4-C5, C5-C6 and C6-C7 of the cervical spine according to MR/ examination.
Methods. Тhe biomechanics of the physiological processes of this department has been studied on the basis of MR/ data. A computer program «A method for assessing the risk of herniated protrusions of intervertebral discs of the cervical spine based on the results of an MRI examination» has been developed and tested. The measurements required for the above assessment were obtained during the evaluation of the MR/ examination of a particular patient, after which the data was entered into the program. Тhe calculation results were compared with the database previously obtained by the authors in the course of experimental and clinical studies.
Results. Тhe model we use correctly describes the mechanical features of the vertebral junction, since it takes into account the most significant features of their structure, which affect the change in the length of the arms of the levers and the force of pressure on the center of the intervertebral disc. Based on magnetic resonance imaging data, the height of the intervertebral disc at the level of the anterior edges of the vertebral bodies and the АV value were determined, and tg was calculated. For a particular patient, the risk of intervertebral disc protrusion was obtained at the C4-C5, C5-C6 and C6-C7 levels.
Conclusion. Тhe test results of the program for assessing the risk of developing an intervertebral disc protrusion in the cervical spine make it possible to describe dynamic phenomena in the cervical spine and predict an unfavorable outcome of pathology at the preclinical stage, even in the absence of clinical manifestations.
About the Authors
E. S. MokhovaRussian Federation
Ekaterina S. Mokhova, Assistant of the Department of Osteopathy with a Course of Functional and Integrative Medicine
41 Kirochnaya Str., St. Petersburg 191015
A. V. Kolsanov
Russian Federation
Alexander V. Kolsanov, Head of the Department of Operative Surgery and Clinical Anatomy with a Course
of Medical Information Technologies
89 Chapaevskaya Str., Samara 443099
References
1. Топографо-анатомический анализ и конечно-элементное моделирование динамических и биомеханических закономерностей смещения мышечно-фасциальных футляров шеи / Е. С. Мохова, Д. Е. Мохов, Е. В. Яковлев, С. А. Живолупов, Д. Ю. Бутко, Р. В. Алиев, И. М. Гасанбеков, А. С. Ведяшкина, А. А. Смирнов // Медицинский совет. 2023. Т. 17, № 6. С. 330–344. https://doi.org/10.21518/ms2023-061.
2. Пат. 2795175 Российская Федерация. МПК А61В 6/00. Способ оценки риска возникновения грыжевых выпячиваний межпозвонковых дисков С4-С5, С5-С6 и С6-С7 шейного отдела позвоночника / Яковлев Е. В., Смирнов А. А., Живолунов С. А., Овсепьян А. Л., Гневышев Е. Н., Новиков Р. В. № 0002795175; заявл. 06.07.22; опубл. 28.04.23.
3. Анатомическая оценка изолированного влияния биомеханических факторов на процесс формирования смещений дискового материала за пределы пространства межпозвонковых дисков шейного отдела позвоночника в структуре дорсопатий / Е. В. Яковлев, А. А. Смирнов, С. А. Живолупов, Е. Н. Гневышев, Е. С. Мохова, Ю. А. Тероева, Р. В. Алиев, Д. Е. Мохов, А. Л. Овсепьян // Оперативная хирургия и клиническая анатомия (Пироговский научный журнал). 2022. Т. 6, № 2. С. 32–44. https://doi.org/10.17116/ иoperhirurg2022602132.
4. Ris Factors of Intervertebra Disc Patho ogy – A Point of View Former y and Today – A Review / N. Zie ins a, M. Podgórski, R. Haładaj, M. Po guj, Ł. O ewni // J. C in. Med. 2021. N 10(3). P. 409. https://doi.org/10.3390/jcm10030409/.
5. Кузьмин А. И., Кон И. И., Беленький В. Е. Сколиоз. М.: Медицина, 1981. 272 с.
6. Magnetic Resonance C assification System of Cervica Intervertebra Dis Degeneration: Its Va idity and Meaning / A. Suzu i, M. D. Daubs, T. Hayashi, M. Ruangchaini om, Xiong, K. Phan, T. P. Scott, J. C. Wang // C in. Spine Surg. 2017. N 30(5). P. 547–553. https://doi.org/10.1097/BSD.0000000000000172.
7. Is it appropriate to measure age-re ated umbar disc degeneration on the mid-sagitta MR image? A quantitative image study / X. Hu, M. Chen, J. Pan, L. Liang, Y. Wang // Eur. Spine J. 2018. N 27(5). P. 1073–1081. https://doi.org/10.1007/s00586-017-5357-3.
8. The effect of cervica intervertebra disc degeneration on the motion path of instantaneous center of rotation at degenerated and adjacent segments: A finite e ement ana ysis / Sang, C. F. Du, B. Wu, X. Y. Cai, W. Cui, C. X. Yuchi, T. Rong, H. Sang, B. Liu // Comput. Bio . Med. 2021. N 134. P. 104426. https://doi.org/10.1016/j.compbiomed.2021.104426.
9. Reconstruction of the Three-dimensional Model of Cervical Vertebrae Segments Based on CT Image and 3D Printing / G. Zhao, G. Jiang, X. Xun Yang, P. Xireayi, E. Wang // Chinese journal of medical instrumentation. 2019. N 43(6). P. 451–453. https://doi.org/10.3969/j.issn.1671-7104.2019.06.016.
10. Конечно-элементный анализ при моделировании структур сердца и аорты / А. А. Смирнов, А. Л. Овсепьян, П. А. Квиндт, Ф. Н. Палеев, Е. В. Борисова, Е. В. Яковлев // Альманах клинической медицины. 2021. Т. 49, № 6. С. 375–384. https://doi.org/ 10.18786/2072-0505-2021-49-043.
11. Новый подход к изучению пространственной анатомии верхнечелюстных пазух в сравнении с общепринятыми методиками / О. В. Зелева, П. М. Зельтер, А. В. Колсанов, Е. А. Сидоров // Современные проблемы науки и образования. 2022. № 6-1. С. 114. https://doi.org/10.17513/spno.32214.
12. Disc degeneration of cervica spine on MRI in patients with umbar disc herniation: comparison study with asymptomatic vo unteers / E. O ada, M. Matsumoto, H. Fujiwara, Y. Toyama // Eur. Spine J. 2011. N 20(4). P. 585–591. https://doi.org/10.1007/s00586-0101644-y.
13. Бегун П. И., Афонин П. Н. Моделирование в биомеханике. М.: Высшая школа, 2004. 389 с.
14. Goe A., Kaswa A., Shah A. Ro e of At antoaxia and Subaxia Spina Instabi ity in Pathogenesis of Spina "Degeneration" – Re ated Cervica Kyphosis // Wor d Neurosurg. 2017. N 101. P. 702–709. https://doi.org/10.1016/j.wneu.2017.02.063.
15. Goe A. Ro e of Subaxia Spina and At antoaxia Instabi ity in Mu tisegmenta Cervica Spondy otic Mye opathyс // Acta Neurochir. Supp . 2019. N 125. P. 71–78. https:// doi.org/10.1007/978-3-319-62515-7 11.
16. Biomechanica ana ysis of the cervica spine segment as a method for studying the functiona and dynamic anatomy of the human nec / A. L. Ovsepyan, A. A. Smirnov, A. Pustozerov, D. E. Mo hov, E. S. Mo hova, E. M. Trunin, S. S. Dydy in, Yu. L. Vasil’ev, E. V. Ya ov ev, S. Budday, F. Pau sen, S. A. Zhivo upov, D. A. Starchi // Ann. Anat. 2022. N 240. P. 151856. https://doi.org/10.1016/j.aanat.2021.151856.
17. Reproducing morpho ogica features of intervertebra disc using finite e ement mode ing to predict the course of cervica spine dorsopathy / E. V. Ya ov ev, A. L. Ovsepyan, A. A. Smirnov, A. A. Safronova, D. A. Starchi , S. A. Zhivo upov, D. E. Mo hov, E. S. Mo hova, Yu. L. Vasil’ev, S. S. Dydy in // Russian Open Medica Journa . 2022. N 11(1). P. e0118. https://doi.org/10.15275/rusomj.2022.0118.
Review
For citations:
Mokhova E.S., Kolsanov A.V. Computer Аssessment of the Risk of Нerniated Protrusions of the lntervertebral Discs of the Neck Based on MRl Data. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2024;14(1):149-161. (In Russ.) https://doi.org/10.21869/2223-1536-2024-14-1-148-160