Preview

Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering

Advanced search

Analytical Modeling of Breast Elastography

https://doi.org/10.21869/2223-1536-2024-14-1-104-113

Abstract

The purpose of the research is to develop a method for assessing the level of nonspecific protection of the body. Тhe purpose of the research. Тo develop an analytical method based on micromechanics to determine the location, size and modulus of elasticity of a tumor mass embedded in symmetrical double-dimensional breast tissue and obtain a closed solution for deformation elastograms.
Methods. Changes in tissue elasticity usually correlate with pathological phenomena. Many cancers, such as scirrhous carcinoma of the breast, appear as extremely hard nodules that result from increased stromal density. Other diseases include deposits that increase or decrease tissue elasticity. Complex fluid-filled cysts may not be visible on standard ultrasound, but may be much softer than the embedded tissue. Тhe elastic moduli of tumors change during their pathological evolution. Еlastographic imaging has the potential to detect and characterize cancers by mapping tissue stiffness distribution. Тhe work developed a model of the mammary gland in the form of a two-dimensional layer of unit thickness with a round tumor, taking into account boundary conditions. Local elastic responses were obtained when an acoustic field was applied.
Results. Тo evaluate the possibilities of determining the quantitative values of the elastic modules of the medium, we proposed a model of the process of deformation of heterogeneity under the conditions of ultrasonic static elastography and investigated the influence of elastic moduli and deformation of heterogeneity in the direction of applied pressure. Conclusion. Тhe developed technique made it possible to obtain an analytical solution for the field of deformations and stresses of two-dimensional models of mammary glands containing inhomogeneities. Тhe model makes it possible to use the developed methodology for constructing medical elastographic devices and conducting research in the field of elastography.

About the Authors

D. А. Kravchuk
Southern Federal University
Russian Federation

Denis A. Kravchuk, Doctor of Sciences (Engineering), Associate Professor, Institute  
of Nanotechnology, Electronics and  
Instrumentation

Shevchenko Str., Taganrog 347922



N. N. Chernov
Southern Federal University
Russian Federation

Nikolaj N. Chernov, Doctor of Sciences (Engineering), Professor, Institute of Nanotechnology, Electronics  
and Instrumentation

Shevchenko Str., Taganrog 347922



A. I. Michralieva
Southern Federal University
Russian Federation

Amaliya I. Michralieva, Post-Graduate Student 
of the Institute of Nanotechnology, Electronics аnd Instrumentation

Shevchenko Str., Taganrog 347922



References

1. Elastic Cherenkov effects in transversely isotropic soft materials-I: theoretical analysis, simulations and inverse method / G.-Y. Li, Y. Zheng, Y. Liu, M. Destrade, Y. Cao // J. Mech. Phys. Solids. 2016. N 96. P. 388–410.

2. Исследование распространения поперечных упругих волн в биологических тканях / А. И. Михралиева [и др.] // Моделирование, оптимизация и информационные технологии. 2018. Т. 6, № 4. С. 53–60.

3. Rethinking Liver Fibrosis Staging in Patients with Hepatocellular Carcinoma: New Insights from a Large Two-Center Cohort Study / W. Xu, B. Li, Z. Yang, J. Li, F. Liu, Y. J. Liu // Hepatocell Carcinoma. 2022. N 9. P. 751–781. https://doi.org/10.2147/JHC.S372577.

4. Karam A. R., Beland M. D. Liver Ultrasound Elastography: Review of Techniques and Clinical Applications // R. I. Med. J. 2020. Vol. 103, N 5. P. 26–29. PMID 32481776.

5. Nehring P., Szeligowska J., Przybyłkowski A. Elastography of the Liver in Wilson's Disease // Diagnostics (Basel). 2023. Vol. 13, N 11. P. 1898. https://doi.org/10.3390/diagnostics13111898.

6. Ultrasound Elastography: Basic Principles and Examples of Clinical Applications with Artificial Intelligence – A Review / M. Cè, N. C. D'Amico, G. M. Danesini, C. Foschini, G. Oliva, C. Martinenghi, M. Cellina // BioMedInformatics. 2023. N 3. P. 17–43. https://doi.org/10.3390/biomedinformatics3010002.

7. Use of Palpation Imaging in Diagnosis of Breast Diseases: A Way to Improve the Detection Rate / Y. Ing, C. Sun, Q. Zhou, C. Cheng, C. Yan, B. Wang // Med. Sci. Monit. 2020. N 26. P. e927553-1–e927553-10.

8. Update to the Society of Radiologists in Ultrasound Liver Elastography Consensus Statement / R. G. Barr, S. R. Wilson, D. Rubens, G. Garcia-Tsao, G. Ferraioli // Radiology. 2020. N 296. P. 263–274.

9. Accuracy of controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) for assessing steatosis and fibrosis in non-alcoholic fatty liver disease: A systematic review and meta-analysis / Y.-T. Cao, L.-L. Xiang, F. Qi, Y.-J. Zhang, Y. Chen, X.-Q. Zhou // Eclinicalmedicine. 2022. N 51. P. 101547.

10. Combinational elastography for assessment of liver fibrosis in patients with liver injury / T. Yazaki, H. Tobita, S. Sato, T. Miyake, M. Kataoka, S. Ishihara // J. Int. Med. Res. 2022. N 50. P. 3000605221100126.

11. Artificial intelligence in prediction of non-alcoholic fatty liver disease and fibrosis / G. L. Wong, P. Yuen, A. J. Ma, A. W. Chan, H. H. Leung, V. W. Wong // J. Gastroenterol. Hepatol. 2021. N 36. P. 543–550.

12. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: A prospective multicentre study / K. Wang, X. Lu, H. Zhou, Y. Gao, J. Zheng, M. Tong, C. Wu, C. Liu, L. Huang, T. Jiang [et al.] // Gut. 2019. N 68. P. 729–741.

13. Quantitative ultrasound, elastography, and machine learning for assessment of steatosis, inflammation, and fibrosis in chronic liver disease / F. Destrempes, M. Gesnik, B. Chayer, M.-H. Roy-Cardinal, D. Olivié, J.-M. Giard, G. Sebastiani, B. N. Nguyen, G. Cloutier, A. Tang // PLoS ONE. 2022. N 17. P. e0262291.

14. Park S.-Y., Kang B. J. Combination of shear-wave elastography with ultrasonography for detection of breast cancer and reduction of unnecessary biopsies: A systematic review and meta-analysis // Ultrasonography. 2021. N 40. P. 318–332.

15. Shear Wave and Strain Elastography in Crohn’s Disease – A Systematic Review / A. Grażyńska, J. Kufel, A. Dudek, M. Cebula // Diagnostics. 2021. N 11. P. 1609.

16. Use of Palpation Imaging in Diagnosis of Breast Diseases: A Way to Improve the Detection Rate / Y. Ding, C. Sun, Q. Zhou, C. Cheng, C. Yan, B. Wang // Med. Sci. Monit. 2020. N 26. P. e927553. https://doi.org/10.12659/MSM.927553.

17. Волков-Богородский Д. Б. Структура решений обобщенной задачи Эшелби ипредставление Гаусса для однородных полиномов // Механика композиционных материалов и конструкций. 2019. Т. 25, № 3. С. 416–422.

18. Юденков А. В., Володченков А. М. Устойчивость математических моделей основных задач анизотропной теории упругости // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2020. Т. 30, Вып. 1. С. 112–124.

19. Evaluation of the Liver and Pancreas by 2D Shear Wave Elastography in Pediatric Wilson's Disease / S. Yavuz, F. C. Pişkin, C. Oktay, S. Soyupak, G. Tümgör // Turk. J. Gastroenterol. 2022. Vol. 33, N 2. P. 161–167. https://doi.org/10.5152/tjg.2022.21545.

20. Liver stiffness assessed by real-time two-dimensional shear wave elastography predicts hypersplenism in patients with Wilson's disease: a prospective study / J. Wang, M. Hu, Q. Zhu, L. Sun // BMC Med. Imaging. 2022. Vol. 22. N 1. P. 25. https://doi.org/10.1186/s12880-022-00749-x.


Review

For citations:


Kravchuk D.А., Chernov N.N., Michralieva A.I. Analytical Modeling of Breast Elastography. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2024;14(1):104-114. (In Russ.) https://doi.org/10.21869/2223-1536-2024-14-1-104-113

Views: 272


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1536 (Print)