A Two-Stage Mathematical Model for Evaluating the Modes of Forced Vibrations of an Aircraft Skin Element with the Use of Fiber-Optic Technologies
https://doi.org/10.21869/2223-1536-2023-13-3-52-63
Abstract
The purpose of research is development of a mathematical model of vibration vibrations of an aircraft skin element made in the form of a plate with a two-stage transformation "vibration load parameters – deformation of the plate - change in the wavelength of the optical signal" in order to take into account the number of loading cycles and their characteristics, accumulated fatigue deformation of the plate and its life before the critical state in order to optimize planned repairs and reducing the risks of unpredictable failures associated with fatigue phenomena in the skin material and supporting structures of the aircraft.
Methods. The described mathematical model uses the parameters of a harmonic vibration signal as input data and includes a two-stage transformation, firstly, of the parameters of the vibration signal (frequency, amplitude) into the amplitude of the vibration vibrations of the aircraft skin element made in the form of a plate, secondly, the amplitude of the vibrations of the plate in question into a change in the wavelength of the optical signal, the presence of which is caused by the use of fiber-optic technologies that are promising for the construction of modern systems for monitoring and diagnostics of aircraft.
Results. The proposed mathematical model allows calculating and analytical methods to estimate the amplitude of forced vibration vibrations of the aircraft skin element, which causes the absence of plate resource consumption due to the effects of loading cycles (there is only natural aging of the material), plate resource consumption in elastic deformation mode, accumulation of fatigue deformation of the sample. The method of evaluating the plate for the resonant effect is given, which indirectly affects the processes of designing the elements of the aircraft skin in terms of weight and size indicators, which largely determine the frequency of natural vibrations of the plate. The resulting deformation of the plate is expressed in a change in the wavelength of the light beam for detection and analysis by the control and diagnostic system of the aircraft, made on the basis of fiber-optic technologies.
Conclusion. The proposed mathematical model is designed to assess the residual life of a specific element of the aircraft skin, involves subsequent software modeling to confirm the correctness or refinement of the resulting calculation algorithm.
About the Authors
I. I. SizonovRussian Federation
Ivan I. Sizonov, Student of the Department
of Space Instrumentation and Communication
50 Let Oktyabrya Str. 94, Kursk 305040
A. S. Barabushka
Russian Federation
Alexander S. Barabushka, Deputy General
Designer
26/1 Garshina Str., Moscow Region, Tomilino 140070
I. E. Mukhin
Russian Federation
Ivan E. Mukhin, Dr. of Sci. (Engineering), Professor of the Department of Space Instrumentation and Communications
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Koptev D. S., Mukhin I. E. Prakticheskie rezul'taty raschetno-eksperimental'nyh issledovanij po opredeleniyu diapazonov izmeneniya osnovnyh kontroliruemyh parametrov perspektivnyh aviacionnyh kompleksov [Practical results of computational and experimental studies to determine the ranges of changes in the basic controlled parameters of promising aviation complexes]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universitetyu. Seriya: Upravlenie, vychis-litel'naya tekhnika, informatika. Medicinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2023, vol. 1, no. 3, pp. 39‒60.
2. Sizonov I. I., Mukhin I. E., Barabushka A. S. Podhody k opredeleniyu osta-tochnogo resursa osnovnyh uzlov vertolyota s uchyotom vypolnennyh profilej polyota [Approaches to determining the remaining resource of the main components of the helicopter, taking into account the completed field profiles]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Medicinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2023, vol. 1, no. 3, pp. 61‒73.
3. Bushueva M. E., Belyakov V. V. [Diagnostics of complex technical systems]. Razrabotka radiacionno stojkih poluprovodnikovyh priborov dlya sistem svyazi i precizionnyh izmerenij s ispol'zovaniem shumovogo analiza. Trudy 1-go soveshchaniya po proektu NATO SfP–973799 Semiconductors [Development of radiation-resistant semiconductor devices for communication systems and precision measurements using noise analysis. Proceedings of the 1st meeting on the NATO project SfP-973799 Semiconductors]. N. Novgorod, Talam Publ., 2001, pp. 63‒98. (In Russ.)
4. Mukhin I. E., Seleznev S. L. [Strategy for the development of diagnostic systems and diagnostics of the technical condition of promising aircraft]. Forum "Armiya ‒ 2023". Materialy kruglogo stola [Forum "Army-2023". Materials of the round table]. Moscow, Kubinka-1 Publ., 2023. (In Russ.) онов И. И., Барабушка А. С., Мухин И. Е. Двухэтапная математическая модель оценки режимов … 61 Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering. 2023; 13(3): 52–63
5. José Miguel López-Higuera, Luis Rodriguez Cobo, Antonio Quintela Incera, Adolfo Cobo. Fiber Optic Sensors in Structural Health Monitoring. Jounal of Ligtwave Tecnology, 2011, vol. 29, no. 4, pp. 587–608.
6. Fidanboylu K., Efendioglu H. S. Fiber Optic Sensors And Their Applications. International Advanced Technologies Symposium (IATS’09), May 13‒15, 2009. Karabuk, Turkey, pp. 72‒78.
7. Varzhel S. V. Volokonnye breggovskie reshetki [Fiber Bragg gratings]. St. Petersburg, ITMO University Publ., 2015. 65 p.
8. Medvedkov O. I., Korolev I. G., Vasiliev S. A. Zapis' volokonnyh breggovskih reshetok v skheme s interferometrom Llojda i modelirovanie ih spektral'nyh svojstv [Recording of fiber Bragg gratings in a scheme with a Lloyd interferometer and modeling of their spectral properties]. Moscow, Russian Academy of Sciences Publ., 2004. 46 p.
9. Russell S. J. A novel method for the localization of buried optical cables, where an incident EM-wave modulated the polarization of guided light using the Faraday effect. Measurement Science and Technology, 2004, no. 15, pp. 1–8.
10. Torgovanov A. O., Moskovitin G. V. [Experimental study of the degradation of elastic properties of aluminum samples under cyclic loading]. XXXI Mezhdunarodnaya innovacionnaya konferenciya molodyh uchenyh i studentov po problemam mashinovedeniya (MIKMUS – 2019). Sbornik trudov konferencii [XXXI International Innovative Conference of Young scientists and Students on problems of Machine science (MICMUS – 2019). Proceedings of the conference]. Moscow, A. A. Blagonravov Institute of Machine Science of the Russian Academy of Sciences Publ., 2019, pp. 191‒194. (In Russ.)
11. Ovchinnikov I. N., Artemyev A.V., Bakulin V. N., Bakulin D. V., Neutov I. D., eds. [Vibration-velocity characteristics of fatigue failure of materials and structures]. Materialy XXI Mezhdunarodnoj konferencii po vychisli-tel'noj mekhanike i sovremennym prikladnym programmnym sistemam (VMSPPS'2019), 2019 g., Alushta [Proceedings of the XXI International Conference on Computational Mechanics and Modern Applied Software Systems (VMSPPS'2019), 2019, Alushta]. Moscow, Moscow Aviation Institute Publ., 2019, pp. 308– 310. (In Russ.)
12. Vibraciya v tekhnike [Vibration in technology]; ed. by V. N. Chelomey. Moscow, Mechanical Engineering, 1981, vol. 5. 496 p.
13. Zhikhar A. I., Lubenko V. N. Vibracionnaya matematicheskaya model' sudovyh truboprovodov [Vibration mathematical model of ship pipelines]. Vestnik Astrahanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Morskaya tekhnika i tekhnologiya = Bulletin of the Astrakhan State Technical University. Series: Marine Engineering and Technology, 2007, no. 2 (37), pp. 103–106.
14. Ermishkin V. A., Ovchinnikov I. N. [Hazard assessment of the danger of cyclic loading modes for fatigue damage of materials]. Aktual'nye problemy nadezhnosti tekhnologicheskih, energeticheskih i transportnyh mashin. Trudy Mezhdunarodnoj nauchno-tekhnicheskoj konferencii [Actual problems of reliability of technological, energy and transport machines: proceedings of the International Scientific and Technical Conference]. Samara, 2003, pp. 414-421. (In Russ.)
15. Ovchinnikov I. N. [Diagnostics of fatigue failure of the material through the reliability of vibration test results]. Materialy XII Mezhdunarodnoj konferencii po prikladnoj matematike i mekhanike v aerokosmicheskoj otrasli (NPNJ’2018), 2018 g., Alushta [Proceedings of the XII International Conference on Applied Mathematics and Mechanics in the Aerospace Industry (NPNJ’2018), 2018, Alushta]. Moscow, Moscow Aviation Institute Publ., 2018, pp. 425‒ 427. (In Russ.)
16. Ovchinnikov I. N., Stepnev V. A., Brantsevich P. Yu. Authenticity of the equiva-lent vibration tests. Proceedings 19 International Congress on Sound and Vibration. Vilnius, Lithuania, 2012, p. 45.
17. Vibraciya v tekhnike [Vibration in technology]; ed. by V. N. Chelomey. Moscow, Mechanical Engineering Publ., 1981. 496 p.
18. Ermishkin V. A., Murat D. P., Lepeshkin Yu. D. [Photometric diagnostics of fatigue failure of metallic materials]. Deformaciya i razrushenie materialov i nanomaterialov. Sbornik statej po materialam II Mezhdunarodnoj konferencii [Deformation and destruction of materials and nanomaterials. Collection of articles based on the materials of the II International Conference]. Moscow, A. A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences Publ., 2007, pp. 605-613. (In Russ.)
19. Kotelkin A. V., Zvonov A. D., Lutzau A. V., Matveev D. B. Ostatochnye napryazheniya i portativnye rentgenovskie difraktometry dlya ih opredeleniya [Residual stresses and portable X-ray diffractometers for their determination]. Moscow, IRIAS Publ., 2009, pp. 423– 435.
20. Kotelkin A. V., Roberov I. G., Matveev D. B., Lednev I. S. Opredelenie ostatochnogo resursa i metody povysheniya urovnya bezopasno-sti pri ekspluatirovanii konstrukcionnyh materialov v aviacii [Determination of the residual resource and methods of increasing the level of safety in the operation of structural materials in aviation]. Sovremennye materialy, tekhnika i tekhnologii = Modern Materials, Equipment and Technologies, 2016, no. 1 (4), pp. 104–113.
Review
For citations:
Sizonov I.I., Barabushka A.S., Mukhin I.E. A Two-Stage Mathematical Model for Evaluating the Modes of Forced Vibrations of an Aircraft Skin Element with the Use of Fiber-Optic Technologies. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2023;13(3):52-63. (In Russ.) https://doi.org/10.21869/2223-1536-2023-13-3-52-63
JATS XML


