Intelligent System for Providing Migration Through Dynamic Data Deserialization
https://doi.org/10.21869/2223-1536-2023-13-3-31-51
Abstract
The purpose of research. Timely provision of data transfer between information systems allows you to quickly exchange resources. However, applications may have different data formats and structures. Therefore, the aim of the research was to develop models, methods and algorithms for a system of asynchronous deserialization of a data string, providing an increase in the efficiency of determining data models by generating strongly typed objects.
Methods. The way to deserialize models from data involves line-by-line decomposition of a JSON-file line with the definition of key-value types and their correlation with the data model: character, string, number, boolean value. After that, the web controller conducts asynchronous generation of the class and its objects. To classify string values, serialized string value classifiers are used. For asynchronous generation of objects, a system of “contracts” of models and algorithms for executing and converting these models are used.
Results. The deserializer consists of a system of four model analysis controllers and a value generation algorithm. A simple single model deserialization model allows the model to be mapped to relational database table headers to enable model migration between systems. The generated objects are represented by static data types, which ensures that they can be written to any DBMS system using built-in tools. A complex model represents a block of values as a system of different models. Software has been developed for connecting source and target databases, which allows you to migrate data from the created models. Generated values are represented as full-fledged objects and can be used to create a web interface for applications, edit data models, and manage the model system.
Conclusion. Experimental studies on deserialization of models from a JSON string containing complex model classes showed an average accuracy of determining the data type of models in 92% of cases, in particular when determining the types of values "character" and "string". The created models are presented in the form of a data table and can be used to ensure the migration of these models.
Keywords
About the Authors
R. A. TomakovaRussian Federation
Rimma A. Tomakova, Dr. of Sci. (Engineering), Professor, Professor of the Department of Software Engineering
50 Let Oktyabrya Str. 94, Kursk 305040
D. V. Ivanov
Russian Federation
Dmitry V. Ivanov, Undergraduate
50 Let Oktyabrya Str. 94, Kursk 305040
N. A. Korsunsky
Russian Federation
Nikita A. Korsunsky, Post-Graduate Student
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Tomakova R. A., Tomakov M. V., Durakov I. V., Zhilin V. V. Metod klassifikacii rentgenogramm na osnove ispol'zovaniya global'noj informacii ob ih strukture [Method of classification of radiographs based on the use of global information about their structure]. Biomedicinskaya radioelektronika = Biomedical Radioelectronics, 2016, no. 9, pp. 45‒51.
2. Korenevsky N. A., Tomakova R. A., Seregin S. P., Rybochkin A. F. Nejronnye seti s makrosloyami dlya klassifikacii i prognozirovaniya patologij setchatki glaza [Neural networks with macro layers for classification and prediction of retinal pathologies]. Medicinskaya tekhnika = Medical Equipment, 2013, no. 4 (280), pp. 16‒18.
3. Brezhneva A. N., Borisovsky S. A., Tomakova R. A., Filist S. A. Nejrosetevye modeli segmentacii angiogramm glaznogo dna na osnove analiza RGB-kodov pikselej [Neural network models of segmentation of fundus angiograms based on the analysis of RGB pixel codes]. Sistemnyj analiz i upravlenie v biomedicinskih sistemah = System Analysis and Management in Biomedical Systems, 2010, vol. 9, no. 1, pp. 72‒76.
4. Filist S. A., Dabagov A. R., Tomakova R. A., Malyutina I. A. Mnogoslojnye morfologicheskie operatory dlya segmentacii slozhnostrukturiruemyh rastrovyh polutonovyh izobrazhenij [Multilayer morphological operators for segmentation of complex structured raster halftone images]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Medicinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2019, vol. 9, no. 3 (32), pp. 44‒63.
5. Tomakova R. A., Filist S. A., Pykhtin A. I. Automatic Fluorography Segmentation Method Based on Histogram of Brightness Submission in sliding Window. International Journal of Pharmacy and Technology, 2017, vol. 9, no 1, pp. 28220‒28228.
6. Tomakova R. A., Shevtsov A. N. Sposob postroeniya telekommunikacionnoj seti peredachi dannyh s borta vozdushnogo sudna na nazemnyj dispetcherskij punkt [Method of building a telecommunication data transmission network from an aircraft to a ground control room]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Medicinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2020, vol. 10, no. 1, pp. 157‒173.
7. Shiyi Cao, Salvatore Di Girolamo, Torsten Hoefler. Accelerating Data Serialization / Deserialization Protocols with In-Network Compute. Workshop on Exascale MPI (ExaMPI). Dallas, TX, USA, EEE Publ., 2023, pp. 12‒19.
8. Sayar Imen, Bartel Alexandre, Bodden Eric, Le Traon Yves. An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities. ACM Transactions on Software Engineering and Methodology, 2023, no. 1-31. https://doi.org/10.1145/3554732
9. Juan Antonio Mora-Castillo. Object serialization/deserialization and data transmission with JSON. Revista Tecnología en Marcha, 2016, vol. 29, is. 1, pp. 118‒125. https://doi.org/10.18845/tm.v29il.2544
10. Huang B., Tang Y. Research on optimization of real-time efficient storage algorithm in data information serialization. PLoS One, 2021, no. 16(12), p. e0260697. https://doi.org/10.1371/journal.pone.0260697
11. Software Architecture: 15th European Conference, ECSA 2021; ed. by S. Biffl, E. Navarro, W. Löwe, M. Sirjani, R. Mirandola, D. Weyns. Sweden, Virtual Event Publ., 2012. 339 p.
12. Borisovsky S. A., Brezhneva A. N., Tomakova R. A. Nejrosetevye modeli s ierarhicheskim prostranstvom informativnyh priznakov dlya segmentacii plohostrukturirovannyh izobrazhenij [Neural network models with a hierarchical space of informative features for segmentation of poorly structured images]. Biomedicinskaya radioelektronika = Biomedical Radioelectronics, 2010, no. 2, pp. 49‒53.
13. Freeman E., Robson E., Sierra K. Patterny proektirovaniya [Design patterns]. St. Petersburg, Peter Publ., 2011, pp. 203‒229.
14. Martin R. Principy, shablony i metody gibkoj razrabotki na C # [Principles, patterns and methods of agile development in C#]. St. Petersburg, Peter Publ., 2019, pp. 39‒49.
15. Varanasi B., Bartkov M. Spring REST. Building Java Microservices and Cloud Applications. Apress Berkeley, CA, 2022. 243 p.
16. Sarshfield S. Data Migration Best Practices: Strategies for Successful Data Migration Between Applications. Kindle, 2018. 169 p.
17. Newman S. Sozdanie mikroservisov [Creation of microservices]. St. Petersburg, Peter Publ., 2016. 304 p.
18. Mistrík I., Bahsoon R., Ali N., Heisel M., Maxim B. Software Architecture for Big Data and the Cloud. Elsevier Science, 2017.
19. Morris J. Data Migration Handbook: Practical Advice for Data Migration Projects. London, BCS The Chartered Institute for IT Publ., 2020, pp. 231‒244.
20. Doolan D. Migraciya dannyh: prakticheskoe rukovodstvo po effektivnomu perenosu dannyh [Data Migration: A Practical Guide to Effective Data Migration]. Wimbledon, London, BCS Learning & Development Ltd Publ., 2020, pp. 301‒312.
Review
For citations:
Tomakova R.A., Ivanov D.V., Korsunsky N.A. Intelligent System for Providing Migration Through Dynamic Data Deserialization. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2023;13(3):31-51. (In Russ.) https://doi.org/10.21869/2223-1536-2023-13-3-31-51


