Preview

Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering

Advanced search

A Method and Algorithm for Implementing the Mandelbrot Set for Processing Complex Structured Images

https://doi.org/10.21869/2223-1536-2023-13-4-115-130

Abstract

The purpose of research. In our life, fractals are ubiquitous, for example, in nature, there are a huge number of figures similar to themselves and built according to certain laws. Fractals are used in computer graphics, economics, radio engineering, physics and many other fields. The use of fractals in various fields of science can open up many new possibilities. Therefore, the development of a software product designed to visualize the Mandelbrot set is an urgent task. The purpose of the research is to develop a software product designed for processing complex structured images based on fractal methods and algorithms for visualizing the Mandelbrot set.

Methods. The Java programming language was used to implement the software product in order to visualize the Mandelbrot set. The SQLite database was used as a local data store. Libraries were also used: JavaFX ‒ to create a user interface; SQLite JDBC 3.21.0 ‒ to work with the SQLite database; imgscalr ‒ to scale images; Apache Commons IO 2.6 to work with the file system; ControlsFX v8.40.14 ‒ to create a user interface.

Results. The developed software product based on fractal methods makes it possible to significantly highlight the textural features of images, on the basis of which the clustering operation of selected objects of interest in images is performed in order to export them for further classification.

Conclusion. During the implementation of the project, a software product for visualization of the Mandelbrot set was implemented, which can be used to model objects having a fractal shape, in relation to the processing of complexly structured images containing invisible hidden features of objects in the images.

About the Authors

R. A. Tomakova
Southwest State University
Russian Federation

Rimma A. Tomakova, Dr. of Sci. (Engineering), Professor, Professor of the Department of Software Engineering

50 Let Oktyabrya Str. 94, Kursk 305040

Researcher ID: O-6164-2015



I. M. Akhmadullin
Southwest State University
Russian Federation

Ildar M. Akhmadullin, Undergraduate of the Department of Software Engineering

50 Let Oktyabrya Str. 94, Kursk 305040



N. G. Nefedov
Southwest State University
Russian Federation

Nikita G. Nefedov, Undergraduate of the Department of Software Engineering

50 Let Oktyabrya Str. 94, Kursk 305040



E. I. Puzyrev
Southwest State University
Russian Federation

Evgeny I. Puzyrev, Undergraduate of the Department of Software Engineering

50 Let Oktyabrya Str. 94, Kursk 305040



A. A. Malyshev
Southwest State University
Russian Federation

Anton A. Malyshev, Student of the Department of Software Engineering

50 Let Oktyabrya Str. 94, Kursk 305040



References

1. Potapov A. A., eds. Novejshie metody obrabotki izobrazhenij [The latest methods of image processing]; ed. by A. A. Potapov. Moscow, Fizmatlit, 2008. 496 p.

2. Fisenko V. T., Fisenko T. Y. Issledovanie metodov raspoznavaniya obrazov dlya sistem komp'yuternogo zreniya robotov [Investigation of pattern recognition methods for robot computer vision systems]. Ivestiya vuzov. Priborostroenie = Ivestia of Universities. Instrumentation, 2013, vol. 56, no. 5, pp. 63‒70.

3. Rusanova I. A. Vozmozhnosti fraktal'noj obrabotki izobrazhenij i signalov v medicine [Possibilities of fractal processing of images and signals in medicine]. Moscow, LAP Lambert Academic Publishing, 2014. 140 p.

4. Bak P. Kak rabotaet priroda. Teoriya samoorganizovannoj kritichnosti [How nature works. Theory of self-organized criticality]. Moscow, URSS, Librocom Publ., 2022. 288 p.

5. Demenok S. L. Fraktal. Mezhdu mifom i remeslom [Fractal. Between myth and craft]. Moscow, Rinvol, Academy of Culture Research Publ., 2011. 296 p.

6. Dyudin M. V., Povalyaev A. D., Podvalny E. S., Tomakova R. A. Metody i algoritmy konturnogo analiza dlya zadach klassifikacii slozhnostrukturiruemyh izobrazhenij [Methods and algorithms of contour analysis for classification problems of complex structured images]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Voronezh State Technical University, 2014, vol. 10, no. 3-1, pp. 54‒59.

7. Tomakova R. A., Tomakov M. V., Durakov I. V., Zhilin V. V. Metod klassifikacii rentgenogramm na osnove ispol'zovaniya global'noj informacii ob ih strukture [Method of classification of radiographs based on the use of global information about their structure]. Biomedicinskaya radioelektronika = Biomedical Radioelectronics, 2016, no. 9, pp. 45‒51.

8. Tomakova R. A. Dyudin M. V., Tomakov M. V. Nejrosetevye modeli prinyatiya reshenij dlya diagnostiki zabolevanij legkih na osnove flyuorogramm grudnoj kletki [Neural network models of decision-making for the diagnosis of lung diseases based on chest fluorograms]. Biomedicinskaya radioelektronika = Biomedical Radioelectronics, 2014, no. 9, pp. 12‒15.

9. Brezhneva A. N., Tomakova R. A., Filist S. A. Spektral'nyj analiz segmentov izobrazheniya glaznogo dna dlya kolichestvennoj ocenki sosudistoj patologii [Spectral analysis of fundus image segments for quantitative assessment of vascular pathology]. Biomedicinskaya radioelektronika = Biomedical Radioelectronics, 2009, no. 6, pp. 15‒18.

10. Mandelbrot B. B. Fraktaly i haos. Mnozhestvo Mandel'brota i drugie chudesa [Fractals and chaos. The Mandelbrot set and other miracles]. Moscow, Regular and chaotic dynamics Publ., 2009. 392 p.

11. Demenok S. L. Prosto fraktal [Simply fractal]. Moscow, Strata Publ., 2018. 308 p.

12. Sekovanov V. S. Elementy teorii fraktal'nyh mnozhestv [Elements of the theory of fractal sets]. Moscow, Unitorial URSS Publ., 2018. 248 p.

13. Guts A. K. Kompleksnyj analiz i kibernetika [Complex analysis and cybernetics]. Moscow, LKI Publ., 2010. 144 p.

14. Mandelbrot B. B. Fraktal'naya geometriya prirody [Fractal geometry of nature]. Moscow, Institute of Computer Research Publ., 2010. 676 p.

15. Bozhokin S. V., Parshin D. A. Fraktaly i mul'tifraktaly [Fractals and multifractals]. Izhevsk, Regular and chaotic dynamics Publ., 2001. 128 p.

16. Prokhorenok N. A. Osnovy Java [Fundamentals of Java]. St. Petersburg, BHVPetersburg Publ., 2017. 704 p. 17. Prokhorenok N. A. [JavaFX]. St. Petersburg, BHV-Petersburg Publ., 2020. 768 p.

17. Vasiliev A. N. Ob"ektno-orientirovannoe programmirovanie [Java. Object-oriented programming]. St. Petersburg, Peter Publ., 2012. 398 p.

18. Laforet R. Struktury dannyh i algoritmy v Java [Data structures and algorithms in Java]. St. Petersburg, Peter Publ., 2016. 704 p.

19. Niemeyer P., Leuk D. Programmirovanie na Java [Programming in Java]. Moscow, Eksmo Publ., 2014. 1216 p.


Review

For citations:


Tomakova R.A., Akhmadullin I.M., Nefedov N.G., Puzyrev E.I., Malyshev A.A. A Method and Algorithm for Implementing the Mandelbrot Set for Processing Complex Structured Images. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2023;13(4):115-130. (In Russ.) https://doi.org/10.21869/2223-1536-2023-13-4-115-130

Views: 184


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1536 (Print)