Evaluation of the Transmission Range of Videoinformation of Various Quality when Monitoring Emergency Situations from an Unmanned Aerial Vehicle
https://doi.org/10.21869/2223-1536-2023-13-2-31-44
Abstract
The purpose of research The aim of the study is to estimate the maximum transmission range of video information of various quality from an unmanned aerial vehicle to predict its capabilities when monitoring an emergency situation.
Methods. Research methods are based on the concepts of the theory of radio electronics, the theory of diagnostics and prognostics of the technical condition of unmanned aerial vehicles. The methods of multicriteria analysis, parametric and structural synthesis were used. The principles of transmitting video information from unmanned aerial vehicles used to monitor emergency situations are analyzed. A critical assessment of the maximum transmission range of video information from unmanned aerial vehicles during emergency monitoring has been made.
Results. Graphs of the dependence of the energy reserve in the radio communication line between the unmanned aerial vehicle and the ground control system have been obtained, allowing to estimate the maximum values of the transmission range of video information of various quality in the 2.4 and 5.8 GHz bands when monitoring emergencies. The maximum line-of-sight range between the UAV and the UAV slightly depends on the lifting height of the antenna of the mobile UAV and at the lifting height of the UAV from 100 to 500 m is from 40 to 85 km. The maximum range of HD quality video transmission with the FM-4 UAV using Turbo 7/8 turbocoding in the 2.4 and 5.8 GHz bands is 3 and 7 km, respectively, and when transmitting FHD quality video information with the CAM-16 UAV using Turbo 7/8 turbocoding in the 2.4 and 5.8 GHz bands is 1.4 and 3.3 km.
Conclusion. The development of a method for determining the maximum transmission distance of video and command-telemetry information allows for a more accurate assessment of the energy reserve in the radio communication line with an unmanned aerial vehicle. Unmanned aerial vehicles for direction finding and detection of rescue beacons of victims during search and rescue operations should be considered as promising areas of research in the field of the use of unmanned aerial vehicles in emergency situations.
About the Authors
M. Y. AlempievRussian Federation
Mikhail Y. Alempiev, Post-Graduate Student
Department of Space Instrumentation and Communication Systems
305040
50 Let Oktyabrya Str. 94
Kursk
D. S. Koptev
Russian Federation
Dmitry S. Koptev, Senior Lecturer
Department of Space Instrumentation and Communication Systems
305040
50 Let Oktyabrya Str. 94
Kursk
V. G. Dovbnya
Russian Federation
Vitaly G. Dovbnya, Professor
Department of Space Instrumentation and Communication
Systems
305040
50 Let Oktyabrya Str. 94
Kursk
E. V. Skripkina
Russian Federation
Elena V. Skripkina, Associate Professor
Department of Mathematics and Natural Sciences
141070
42 Gagarin Str.
Moscow Region
Korolev
References
1. Popov N. I., Efimov S. V. Ispol'zovanie bespilotnykh letatel'nykh apparatov v MChS Rossii [The use of unmanned aerial vehicles in the Ministry of Emergency Situations of Russia]. Problemy obespecheniya bezopasnosti pri likvidatsii posledstvii chrezvychainykh situatsii [Problems of ensuring safety in the aftermath of emergencies]. Voronezh, 2016, pp. 149–151. Available at: https://www.masters.donntu.ru/2017/etf/nizhenets/library/article2.htm. (accessed 05. 03. 2023)
2. Salakhutdinov I. T. Podkhod k otsenke realizuemosti sozdaniya aviatsionnoi sistemy (na primere transportnoi bespilotnoi aviatsionnoi sistemy) [An approach to assessing the feasibility of creating an aviation system (on the example of a transport unmanned aircraft system)]. Modern Economy Success, 2023, no. 1, pp. 231–243.
3. Makarenko S. I. Protivodeistvie bespilotnym letatel'nym apparatam [Countering unmanned aerial vehicles]. St. Petersburg, Science-intensive technologies Publ., 2020. 204 p.
4. Andronov V. G., Chuev A. A., Knyazev A. A. Model' parametrov otklonenii marshruta poleta bespilotnykh letatel'nykh apparatov ot zadannoi traektorii [Model of parameters of deviations of the flight route of unmanned aerial vehicles from a given trajectory]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2021, vol. 25, no. 4, pp. 145–161.
5. Salakhutdinov I. T. Analiz pereosnashcheniya aviatsionnoi transportnoi sistemy v transportnye bespilotnye aviatsionnye sistemy na razlichnykh etapakh zhiznennogo tsikla [Analysis of the re-equipment of the aviation transport system into transport unmanned aircraft systems at various stages of the life cycle]. Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Seriya: Ekonomika i pravo = Modern Science: Actual Problems of Theory and Practice, Series: Economics and Law, 2020, no. 7, pp. 67–71.
6. Sadovskaya E. V. [The use of network technologies as a solution to the problem of transmitting large amounts of data over long distances when communicating UAV-ground control point]. Gagarinskie chteniya – 2020. Sbornik tezisov dokladov [Gagarin Readings – 2020. Collection of abstracts]. Moscow, Moscow Aviation Institute (National Research University) Publ., 2020, pp. 643–644. (In Russ.)
7. Mukhin I. E., Vetrova A. S. [The choice of antennas for small unmanned aerial vehicles]. Infokommunikatsii i kosmicheskie tekhnologii: sostoyanie, problemy i puti resheniya. Sbornik nauchnykh statei po materialam VI Vserossiiskoi nauchno-prakticheskoi konferentsii, Kursk, 14–15 aprelya 2022 goda [Infocommunications and space technologies: state, problems and solutions. Collection of scientific articles based on the materials of the VI All-Russian Scientific and Practical Conference, Kursk, April 14–15, 2022]. Kursk, Southwest State University Publ., 2022, pp. 45–50. (In Russ.)
8. Slyusar V. Peredacha dannykh s borta BPLA: standarty NATO [Data transmission from the UAV: NATO standards]. Elektronika: Nauka, tekhnologiya, biznes = Electronics: Science, Technology, Business, 2010, no. 3 (101), pp. 80–87.
9. Filist S. A., Tomakova R. A., Nefedov N. G., eds. Intellektual'naya sistema obrabotki izobrazhenii, poluchaemykh s bespilot-nykh letatel'nykh apparatov [Intelligent image processing system obtained from unmanned aerial vehicles]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Series: Management, Computer engineering, Computer science. Medical instrumentation = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2022, vol. 12, no. 4, pp. 64–85.
10. Sklyar B. Tsifrovaya svyaz'. Teoreticheskie osnovy i prakticheskoe primenenie [Digital communication. Theoretical foundations and practical application]; ed. by A. V. Nazarenko, L. A. Khudyakova. 2<sup>nd</sup> ed. Moscow, Williams Publ., 2003. 1104 p.
11. Dovbnya V. G., Asiantsev V. E., Mikhailov S. N. Pomekhoustoichivost' radiopriemnykh sistem tsifrovykh linii svyazi [Noise immunity of radio receiving systems of digital communication lines]. Kursk, Southwest State University Publ., 2017. 175 p.
12. Oleinik I. I., Chernomorets A. A., Andronov V. G., eds. Malorazmernye bespilotnye letatel'nye apparaty: zadachi obnaruzheniya i puti ikh resheniya [Small-sized unmanned aerial vehicles: detection tasks and ways to solve them]. Kursk, Southwest State University Publ., 2021. 171 p.
13. Pantenkov D. G., Gusakov N. V., Egorov A. T., eds. Tekhnicheskaya realizatsiya vysokoskorostnogo informatsionnogo kanala radiosvyazi s bespilotnogo letatel'nogo apparata na nazemnyi punkt upravleniya [Technical implementation of a high-speed information channel of radio communication from an unmanned aerial vehicle to a ground control point]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Voronezh State Technical University, 2019, vol. 15, no. 5, pp. 52–71.
14. Didenko M. G. Radiosignaly v sputnikovykh sistemakh svyazi [Radio signals in satellite communication systems]. Available at: https:// www.studylib.net/doc/26117799/radiosignaly-v-sputnikovyh-sistemah-svyazi. (accessed 17. 03. 2023)
15. Dmitriev Z. A., Znamensky A. I., Kundin N. Y., eds. Analiz standartov peredachi dannykh, svyazi i upravleniya mezhdu nazemnym punktom upravleniya i bespilotnym letatel'nym apparatom [Analysis of data transmission, communication and control standards between a ground control point and an unmanned aerial vehicle]. Nauchnaya mysl' = Scientific Thought, 2022, vol. 19, no. 1-1 (43), pp. 87–91.
16. Andronov V. G., Chuev A. A., Lutsenko M. N. [Areas and features of the use of various types of unmanned aerial vehicles]. Infokommunikatsii i kosmicheskie tekhnologii: sostoyanie, problemy i puti resheniya. Sbornik nauchnykh statei po materialam V Vserossiiskoi nauchno-prakticheskoi konferentsii [Infocommunications and space technologies: state, problems and solutions. Collection of scientific articles based on the materials of the V All-Russian Scientific and Practical Conference, Kursk, April 15–16, 2021]. Kursk, Southwest State University Publ., 2021, pp. 316–323. (In Russ.)
17. Yaronova N. V., Ametova A. A. Ispol'zovanie bespilotnykh letatel'nykh apparatov dlya peredachi dannykh [The use of unmanned aerial vehicles for data transmission]. Universum: tekhnicheskie nauki = Universum: Technical Sciences, 2021, no. 11-2 (92), pp. 92–94.
18. Danilov D. V., Emelyev K. S. [On increasing the noise immunity of the physical interface of an unmanned aerial vehicle]. Nauka, obrazovanie, obshchestvo: tendentsii i perspektivy razvitiya. Sbornik materialov X Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Cheboksary, 21 maya 2018 goda [Science, education, society: trends and prospects of development. Collection of materials of the X International Scientific and Practical Conference, Cheboksary, May 21, 2018]; ed. by O. N. Shirokov, eds. Cheboksary, Center for Scientific Cooperation "Interactive Plus" Publ., 2018, pp. 152–154. (in Russ.)
19. Chuev A. A. [Principles of the organization of autonomous navigation of unmanned aerial vehicles]. Istoricheskie, filosofskie, metodologicheskie problemy sovremennoi nauki. Sbornik statei III Mezhdunarodnoi nauchnoi konferentsii molodykh uchenykh [Historical, philosophical, methodological problems of modern science. Collection of articles of the 3<sup>rd</sup> International Scientific Conference of Young Scientists, Kursk, May 20, 2020]. Kursk, Universitetskaya kniga Publ., 2020, pp. 481–485. (In Russ.)
20. Chudnov A. M. Gubskaya O. A., Kichko Ya. V. Metodika analiza veroyatnostno-vremennykh kharakteristik obmena soobshcheniyami v komplekse bespilotnykh letatel'nykh apparatov [Methodology for analyzing the probabilistic-temporal characteristics of messaging in a complex of unmanned aerial vehicles]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = Proceedings of Tula State University. Technical sciences, 2021, no. 11, pp. 117–124.
21. Pantenkov D. G. Rezul'taty analiza nazemnykh ispytanii kompleksa sredstv sputnikovoi radiosvyazi dlya bespilotnykh letatel'nykh apparatov [The results of the analysis of ground tests of the satellite radio communication complex for unmanned aerial vehicles]. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta = Bulletin of the Ryazan State Radio Engineering University, 2019, no. 69, pp. 42–51.
Review
For citations:
Alempiev M.Y., Koptev D.S., Dovbnya V.G., Skripkina E.V. Evaluation of the Transmission Range of Videoinformation of Various Quality when Monitoring Emergency Situations from an Unmanned Aerial Vehicle. Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2023;13(2):31-44. (In Russ.) https://doi.org/10.21869/2223-1536-2023-13-2-31-44