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Резюме 

Цель исследования – оценка эффективности применения модифицированной архитектуры EfficientNetB3 

на основе методов трансферного глубокого обучения и ранней остановки в системах поддержки принятия 

врачебных решений для дифференциальной диагностики стадий болезни Альцгеймера. 
Методы. Для проведения экспериментальных исследований был сформирован набор данных для обучения, 

проведена нормализация и аугментация данных. Выполнена программная реализация модифицированной 

нейросетевой архитектуры EfficientNetB3 с применением методов трансферного глубокого обучения и ран-

ней остановки на языке программирования Python. Проведено обучение нейросетевой модели. 

Результаты. Оценка эффективности классификации, обученной нейросетевой модели, проводилась с по-

мощью метрик Recall, Precision, Specificity, F1-мера и AUC-ROC. Анализ значений этих метрик показал, что 

результаты, продемонстрированные модифицированной архитектурой EfficientNetB3, характеризуются 

выраженной асимметрией и указывают на узкоспециализированный характер данной модели. С одной сто-

роны, модель проявила себя как эффективный инструмент для диагностики стадии умеренной деменции, 

продемонстрировав максимально возможное значение AUC. С другой стороны, эффективность классифи-

кации для остальных классов значительно ниже (значения AUC для классов «Отсутствие деменции», 

«Очень лёгкая деменция» и «Лёгкая деменция» равны 0,87, 0,86 и 0,95 соответственно). 

Заключение. Исходя из результатов проведенного анализа можно сделать вывод, что основная практиче-

ская ценность данной модификации архитектуры EfficientNetB3 заключается в ее использовании в составе 

гетерогенных ансамблей или каскадных системах диагностики для верификации конкретной стадии бо-

лезни Альцгеймера – умеренной деменции с целью повышения общей эффективности системы. Это указы-

вает на перспективность дальнейших исследований в области создания узкоспециализированных архитек-

тур, способных решать конкретные подзадачи с высокой точностью, превосходящей универсальные, но 

менее сфокусированные подходы. 
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Abstract 

The purpose of the research is evaluation of the effectiveness of the modified EfficientNetB3 architecture based on 

transfer deep learning and early stopping methods in medical decision support systems for differential diagnosis of 

Alzheimer's disease stages. 

Methods. To conduct experimental studies, a training dataset was generated, normalized, and augmented. A modified 

EfficientNetB3 neural network architecture was implemented using transfer learning and early stopping methods in 

Python. The neural network model was trained.. 

Results. The classification performance of the trained neural network model was assessed using the Recall, Precision, 

Specificity, F1-score, and AUC-ROC metrics. Analysis of these metrics revealed that the results achieved by the mod-

ified EfficientNetB3 architecture are characterized by significant asymmetry, indicating the highly specialized nature of 

this model. On the one hand, the model proved to be an effective tool for diagnosing moderate dementia, demonstrating 

the highest possible AUC value. On the other hand, classification performance for the remaining classes was signifi-

cantly lower (AUC values for the "No Dementia," "Very Mild Dementia," and "Mild Dementia" classes were 0,87, 0,86, 

and 0,95, respectively). 

Conclusion. Based on the results of the analysis, it can be concluded that the primary practical value of this modifica-

tion of the EfficientNetB3 architecture lies in its use in heterogeneous ensembles or cascaded diagnostic systems for 

verifying a specific stage of Alzheimer's disease – moderate dementia – in order to improve the overall system effi-

ciency. This points to the potential for further research in the area of creating highly specialized architectures capable 

of solving specific subproblems with high accuracy, surpassing general-purpose but less focused approaches. 
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*** 

Введение 

Нейродегенеративные заболевания 

представляют собой гетерогенную 

группу прогрессирующих патологий 

центральной нервной системы, ключе-

вым патогенетическим механизмом ко-

торых является постепенная гибель 

нейронов. К наиболее распространён-

ным заболеваниям этой категории отно-

сят болезнь Альцгеймера, болезнь Пар-

кинсона, боковой амиотрофический 

склероз и болезнь Хантингтона. Не-

смотря на общее нейродегенеративное 

происхождение, эти заболевания суще-

ственно различаются по клинической 

картине, локализации патологического 

процесса, скорости прогрессирования и 

молекулярно-генетическим механиз-

мам [1].  

Болезнь Альцгеймера (БА) пред-

ставляет собой одну из наиболее распро-

странённых форм деменции, сопровож-

дающуюся необратимым прогрессирую-

щим нейродегенеративным процессом, 

приводящим к снижению когнитивных 

функций, утрате памяти и дезорганиза-

ции повседневной активности. Согласно 

данным из Всемирного отчета о болезни 

Альцгеймера Международной организа-

ция по борьбе с болезнью Альцгеймера 

за 2021 г., число людей, живущих с де-

менцией, превышает 55 млн, из которых 

более 60% приходится на БА. Прогнози-

руется, что к 2050 г. эта цифра достигнет 

152,8 миллионов [2]. Основной фактор 

риска – пожилой возраст, однако на ран-

них стадиях БА может проявляться и у 

пациентов среднего возраста, особенно 

в случае генетической предрасположен-

ности. В настоящее время ранняя диа-

гностика БА остаётся затруднённой 

вследствие неспецифичности симптома-

тики на начальных стадиях, а также 

ограниченного доступа к дорогостоя-

щим и инвазивным методам подтвер-

ждения диагноза [3]. 

Несвоевременное выявление забо-

левания существенно снижает эффек-

тивность возможной терапии, замедля-

ющей прогрессирование симптомов. В 

связи с этим возрастает потребность в 

разработке инструментов ранней неин-

вазивной диагностики, способных выяв-

лять патологические изменения в мозге 

до наступления выраженной клиниче-

ской картины. Магнитно-резонансная 

томография (МРТ) представляет собой 

один из ключевых методов нейровизуа-

лизации, применяемый для диагностики 

и мониторинга нейродегенеративных за-

болеваний. МРТ позволяет визуализиро-

вать структурные изменения головного 

мозга, в частности, атрофию гиппо-

кампа, парагиппокампальных извилин, 

коры медиальных височных долей, а 

также изменения в белом веществе [4]. 

В условиях постоянного роста числа 

пожилого населения и, как следствие, 

распространённости нейродегенератив-

ных расстройств, особенно актуальным 

становится вопрос создания автоматизи-

рованных методов обработки и анализа 

нейровизуализационных данных, кото-

рые смогут повысить эффективность 

ранней диагностики данного вида забо-

леваний и сократить временные затраты 
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медицинского персонала. Также это мо-

жет помочь справиться с недостатком 

специалистов и повысить доступность 

качественной диагностики для населе-

ния, не зависящей от географического 

положения или экспертного опыта от-

дельных врачей [5]. В основе таких ме-

тодов чаще всего лежат алгоритмы ма-

шинного обучения, способные выявлять 

патологические изменения при анализе 

медицинских изображений [6]. Благо-

даря способности к автоматическому из-

влечению пространственных признаков, 

сверточные нейронные сети (СНС) де-

монстрируют высокую эффективность 

при обработке и анализе медицинских 

изображений, в т. ч. полученных с помо-

щью МРТ [7]. 

В работе [8] авторами был проведен 

анализ эффективности применения раз-

личных нейросетевых моделей (НМ) для 

обнаружения болезни Альцгеймера на 

МРТ-снимках. Авторы обучили и срав-

нили шесть моделей СНС с использова-

нием трансферного обучения (ТО): 

VGG19, ResNet101, EfficientNetB3, 

MobileNetV2, InceptionV3 и DenseNet121 – 

для классификации МРТ-снимков по 2 

классам (БА и отсутствие болезни). В ре-

зультате экспериментов НМ InceptionV3 

показала наиболее высокое значение 

метрики оценки качества классифика-

ции Accuracy, равное 99,2%.  

В работе [9] авторы предложили мо-

дель для диагностики БА на основе 

СНС, обученную на МРТ-снимках. Обу-

ченная модель показала значение мет-

рики Accuracy, равное 95, при 

классификации МРТ-снимков по 4 клас-

сам (предеменция, ранняя деменция, 

умеренная деменция и без заболевания).  

Однако стоит отметить, что при рас-

чете метрики оценки качества классифи-

кации Accuracy не учитываются штрафы 

за ложноотрицательные ошибки, также 

стоит отметить, что данная метрика 

имеет низкую чувствительность к дис-

балансу классов, что, в свою очередь, 

весьма критично для задач медицинской 

диагностики [10]. 

В работе [11] авторы провели ряд 

экспериментов с различными архитекту-

рами СНС и использованием метода ТО 

для решения задачи классификации 

МРТ-снимков по 3 классам (БА, легкие 

когнитивные нарушения и когнитивная 

норма). В ходе экспериментов авторы 

использовали четыре модели без приме-

нения ТО и четыре модели с примене-

нием ТО. Модели на основе СНС дали 

информацию о выявленном типе демен-

ции, уровне достоверности диагноза и 

тепловых картах, созданных с помощью 

градиентно-взвешенного картирования 

активации классов (Grad-CAM), выделя-

ющих патологически пораженные обла-

сти мозга. Хотя оба подхода продемон-

стрировали высокую эффективность 

классификации, модели на основе ТО 

показали лучшие результаты (макро-

среднее значение метрики AUC-ROC по 

трем классам, равное 0,86 и 0,97, для по-

казавших лучший результат моделей без 

использования ТО и с применением ТО 

соответственно).  
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Результаты предшествующих ис-

следований указывают на высокий по-

тенциал применения моделей на основе 

СНС, в частности моделей, основанных 

на глубоком ТО, для раннего обнаруже-

ния и дифференциации нейродегенера-

тивных заболеваний в системах под-

держки принятия врачебных решений 

[12]. Такие системы могут помочь меди-

цинским работникам сократить время 

диагностики деменции, оптимизировать 

индивидуальные стратегии управления 

и лечения для пациентов.  

Материалы и методы 

Набор данных для обучения был 

синтезирован на основе изображений из 

репозитория «Инициативы по нейрови-

зуализации болезни Альцгеймера» 

(ADNI) [13]. Изначально набор данных 

содержал 6400 изображений, разделен-

ных на четыре класса: отсутствие при-

знаков деменции (Non Demented), очень 

лёгкая деменция (Very Mild Demented), 

лёгкая деменция (Mild Demented) и уме-

ренная деменция (Moderate Demented).  

Первичный анализ распределения 

данных по классам выявил выраженный 

дисбаланс классов: наиболее многочис-

ленными были классы Non Demented и 

Very Mild Demented, тогда как класс 

Moderate Demented оказался суще-

ственно менее представленным. Такая 

диспропорция способна приводить к 

смещению предсказаний модели в сто-

рону более часто встречающихся клас-

сов и затруднить обучение на менее ре-

презентативных примерах [14]. Для пре-

одоления этой проблемы, а также в це-

лях увеличения объема обучающей вы-

борки и снижения риска переобучения 

был применён метод аугментации 

изображений [15]. С помощью библио-

теки Keras была реализована аугмента-

ция изображений, включающая следую-

щие операции: случайное вращение в 

пределах ±15 градусов, горизонтальное 

отражение, масштабирование и сдвиги 

по ширине и высоте до 10%, а также 

сдвиги по срезу (shearing), что позво-

лило расширить набор данных до 33984 

изображений. Все изображения автома-

тически приводились к размеру 224×224 

пикселя, соответствующему входному 

формату модели EfficientNetB3. Норма-

лизация данных проводилась с использо-

ванием функции efficientnet_preprocess, 

обеспечивающей совместимость с 

предобученными на наборе данных 

ImageNet слоями модели. 

Вместо использования стандарт-

ного генератора ImageDataGenerator для 

поддержки совместимости с текущей 

версией библиотеки TensorFlow приме-

нялись пользовательские генераторы, 

построенные на API tf.data.Dataset, 

включающие поддержку пакетной за-

грузки, предварительной обработки, кэ-

ширования и буферизации. Для обеспе-

чения возможности масштабируемого 

использования аппаратных ресурсов, 

в т. ч. GPU, был использован размер па-

кета данных (batch size), равный 32. Для 

разделения исходного массива изобра-

жений на обучающую и валидационную 

выборки использовалось стратифициро-

ванное разбиение с отношением 80:20 

по каждому классу.  

Предлагаемая НМ базируется на ме-

тоде ТО [16], использующем модифици-

рованную архитектуру EfficientNetB3. В 

рамках модификации НМ поверх «замо-

роженных» слоев базовой модели были 

добавлены следующие классификацион-
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ные слои: глобальный слой усредняю-

щего пулинга (ГСУП) для уменьшения 

пространственной размерности призна-

ков, слой пакетной нормализации (СПН) 

для стабилизации обучения, полносвяз-

ный слой (ПС) с 1024 нейронами, а 

также слой Dropout с коэффициентом 

0,5 для предотвращения переобучения 

путем случайного отключения части 

нейронов в процессе обучения. 

ПС применяется для интеграции и 

обобщения признаков, извлечённых 

предыдущими слоями. ПС был добавлен 

поверх сверточной базы EfficientNetB3 с 

целью последующей классификации на 

основе признаков, извлечённых из МРТ-

снимка. Для обеспечения нелинейности 

модели и эффективности обработки гра-

диентов в качестве функции активации 

используется ReLU. 

Пусть входной вектор признаков из 

предыдущего слоя обозначается как 

𝐱 = [x1, x2, … , xn]
T ∈ ℝn,        (1) 

где n – размерность входного про-

странства (например, после слоя 

GlobalAveragePooling2D она составляет 

1536 для EfficientNetB3). 

В ПС с m = 1024 нейронами вы-

полняются следующие преобразования: 

1. Линейная комбинация признаков 

по 

zj =∑wji

n

i=1

xi + bj, 

  j = 1,2, … ,1024,                (2) 

где wji – вес связи между входом i и 

нейроном j; xi – входной вектор призна-

ков;  bj – смещение (bias). 

В матричной форме линейная ком-

бинация признаков определяется со-

гласно 

z = Wx + b, W ∈ ℝ1024×n, 

 b ∈ ℝ1024.                      (3) 

2. Активация с использованием 

функции ReLU по 

aj = ReLU(zj) = max(0, zj).     (4) 

В векторной форме выход слоя по-

сле активации определяется по  

a = ReLU(z) ∈ ℝ1024.         (5) 

ПС с 1024 нейронами выполняет 

функцию высокой абстракции – он ком-

понирует представление, полученное 

после сверточного анализа, в более ком-

пактное и классификационно-значимое 

пространство. Данная размерность вы-

брана эмпирически как компромисс 

между выразительностью и числом па-

раметров модели с учетом требований к 

производительности и ограниченного 

объема доступных обучающих данных. 

Одним из преимуществ ГСУП в 

контексте модификации НМ является 

его способность существенно умень-

шать число параметров модели, по-

скольку его применение позволяет избе-

жать использования полносвязных 

слоев с большим количеством входов. 

Это особенно важно при обучении мо-

дели на ограниченном количестве МРТ-

снимков, где избыточные параметры мо-

гут привести к переобучению. Кроме 

того, ГСУП облегчает интерпретацию 

модели: каждый элемент итогового век-

тора непосредственно соответствует 

определенному фильтру признаков, что 

используется при последующей визуа-

лизации тепловых карт (метод Grad-

CAM). 

В контексте данного исследования 

ГСУП применяется после финального 

сверточного блока модели EfficientNetB3. 
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Он преобразует трехмерную карту при-

знаков в вектор признаков фиксирован-

ной длины, который затем подается на 

выходной слой с функцией активации 

softmax, производящий вероятностное 

распределение по классам.  

ГСУП представляет собой альтерна-

тиву стандартным ПС, обычно применя-

емым после сверточных блоков нейрон-

ной сети, которые увеличивают число 

параметров модели и тем самым повы-

шают риск переобучения. ГСУП обеспе-

чивает интерпретируемую форму агре-

гирования пространственной информа-

ции по каналам признаков. 

Работу ГСУП можно описать следу-

ющим образом: на вход подается тензор 

признаков после сверточных операций, 

имеющий размерность 𝐻 ×𝑊 × 𝐶, где 

H и W – пространственные размеры (вы-

сота и ширина карты признаков), а C – 

количество каналов. Для каждого канала 

c (от 1 до C) ГСУП вычисляет среднее 

значение по всем пространственным ко-

ординатам этого канала по 

zc =
1

H⋅W
∑ ∑ xi,j,c

W
j=1

H
i=1  ,        (6) 

где xi,j,c – значение тензора признаков в 

позиции (𝑖, 𝑗) канала 𝑐; zc – результиру-

ющее скалярное значение, полученное 

для канала 𝑐 после применения усредня-

ющего пулинга. 

Таким образом, результатом работы 

ГСУП является одномерный вектор z =

[z1, z2, . . . , zC] ∈ ℝ
C, в котором каждый 

элемент отражает агрегированную ак-

тивность соответствующего канала. 

В рамках исследования слой 

BatchNormalization (BN) был добавлен 

между сверточными и ПС классифика-

тора. Входом в слой BN является мини-

батч из m примеров x(1), x(2), … , x(m), 

где каждый элемент x(i) – это скалярное 

значение активации на выходе предыду-

щего слоя. Математическая формализа-

ция данного слоя выглядит следующим 

образом: 

1. Расчет среднего значения по 

батчу: 

μ
B
=

1

m
∑ x(i).m
i=1               (7) 

2. Расчет дисперсии по батчу: 

σB
2 =

1

m
∑ (x(i) − μB)

2m
i=1 .      (8) 

3. Нормализация каждого значения: 

x̂
(i)
=

x(i)−μB

√σB
2+ϵ

,                (9) 

где ϵ – небольшая положительная кон-

станта для численной устойчивости. 

4. Линейное преобразование с обу-

чаемыми параметрами: 

y(i) = γx̂
(i)
+ β,              (10) 

где γ и β – это обучаемые параметры, ко-

торые позволяют слою BN масштабиро-

вать (изменять разброс) нормализован-

ные данные (γ) и сдвигать (изменять 

среднее значение) нормализованные 

данные (β). 

Параметры γ и β позволяют слою 

сохранять представляемость сети (воз-

можность обучиться любому распреде-

лению). Если обучение покажет, что ис-

ходные ненормализованные данные 

были полезнее, модель сможет восста-

новить их масштаб и смещение с помо-

щью этих параметров. 

Финальный выходной слой пред-

ставлял собой ПС с 4 нейронами, соот-

ветствующими количеству классов, и 
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функцией активации Softmax, которая 

обеспечивает вероятностное распреде-

ление принадлежности входного изоб-

ражения к каждому из четырех классов. 

Компиляция модели была выпол-

нена с использованием оптимизатора 

Adam и начальной скоростью обуче-

ния, установленной на уровне 1 × 10–4. 

В качестве функции потерь была вы-

брана категориальная кросс-энтропия 

(categorical_crossentropy), что является 

стандартным решением для задач мно-

гоклассовой классификации.  

Процесс обучения модели управ-

лялся с помощью ряда критериев. Кри-

терием «лучшей» модели служит макси-

мальное значение валидационной точ-

ности (val_accuracy), что гарантирует 

сохранение наиболее эффективной и 

обобщающей конфигурации весов. 

ReduceLROnPlateau динамически регу-

лирует скорость обучения. Если валида-

ционная функция потерь (val_loss) не 

демонстрирует улучшений в течение 5 

последовательных эпох (patience = 5), то 

скорость обучения автоматически 

уменьшается на 20% (factor = 0,2), при 

этом минимальная скорость обучения 

ограничена значением 1 × 10–6. Модель 

прекращает процесс обучения, если ва-

лидационная функция потерь (val_loss) 

не улучшается в течение 10 эпох 

(patience = 10), после чего веса модели 

автоматически восстанавливаются до 

состояния той эпохи, на которой была 

достигнута лучшая производительность 

на валидационном наборе. 

Также был реализован механизм по-

строения тепловой карты Grad-CAM, ви-

зуализирующей область на изображе-

нии, оказавшую наибольшее влияние на 

классификационное решение модели. 

На рисунке 1 приведен пример класси-

фикации и градиентно-взвешенного кар-

тирования активации классов (Grad-

CAM). 

 
Рис. 1. Пример классификации и градиентно-взвешенного картирования  
             активации классов (Grad-CAM) 

Fig. 1. An example of classification and gradient-weighted class activation  
           mapping (Grad-CAM) 
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Тепловая карта генерируется с ис-

пользованием градиентной информации 

с последнего сверточного слоя модели и 

объединяется с оригинальным изобра-

жением. 

Результаты и их обсуждение 

На основе полученных данных о ко-

личестве ошибок первого и второго рода 

с помощью метрик Recall, Precision, 

Specificity F1-меры и AUC-ROC была 

проведена оценка эффективности клас-

сификации, обученной НМ по четырем 

классам: отсутствие признаков демен-

ции (Non Demented), очень лёгкая де-

менция (Very Mild Demented), лёгкая 

деменция (Mild Demented) и умеренная 

деменция (Moderate Demented). 

Метрика оценки качества классифи-

кации Recall отражает долю правильно 

предсказанных положительных приме-

ров среди всех истинных положитель-

ных и описывается по 

Recall =  
TP

TP+FN
,              (11) 

где TP (True Positives) – количество пра-

вильно предсказанных положительных 

примеров; FN (False Negatives) – количе-

ство неправильно предсказанных отри-

цательных примеров [17]. 

Рассмотрим распределение Recall 

по каждому классу в виде столбчатой 

диаграммы (рис. 2).  

 
Рис. 2. Распределение Recall по каждому классу 

Fig. 2. Recall distribution for each class 

Метрика оценки качества классифи-

кации Specificity отражает насколько хо-

рошо модель распознает здоровых паци-

ентов и описывается по (12): 

Specificity =  
TN

TN+FP
,          (12) 

где TN (True Negatives) – количество пра-

вильно предсказанных отрицательных 

примеров; FP (False Positives) – количе-

ство неправильно предсказанных поло-

жительных примеров. 
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Распределение Specificity по каж-

дому классу в виде столбчатой диа-

граммы изображено ниже (рис. 3). 

Метрика оценки качества классифи-

кации Precision отражает долю истинных 

положительных предсказаний среди всех 

случаев и описывается по (13): 

Precision =
TP

TP+FP
.            (13) 

Рассмотрим распределение Precision 

по каждому классу в виде столбчатой 

диаграммы (рис. 4). 

 
Рис. 3. Распределение Specificity по каждому классу 

Fig. 3. Distribution of Specificity for each class 

 
Рис. 4. Распределение Precision по каждому классу 

Fig. 4. Distribution of Precision for each class 
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Метрика оценки качества классифи-

кации F1-мера является гармоническим 

средним между Precision и Recall и опи-

сывается  

F1 = 2 ∙
Precision∙Recall

Precision+Recall
.        (14) 

Распределение F1-меры по каждому 

классу в виде столбчатой диаграммы 

изображено ниже (рис. 5). 

 
Рис. 5. Распределение F1-меры по каждому классу 

Fig. 5. Distribution of F1-measures for each class 

Для решения задачи применения 

ROC-анализа для многоклассовой клас-

сификации был применен метод one-vs-

all, заключающийся в создании бинар-

ных классификаторов для каждого 

класса [18]. Графики полученных ROC-

кривых представлены ниже (рис. 6). 

 
Рис. 6. Графики ROC-кривых  

Fig. 6. ROC curve graphs 
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Проведенный анализ показал, что 

модель демонстрирует особенно высо-

кую чувствительность к классу Moderate 

Demented – Recall и достигает значения 

1,00. Это означает, что система не про-

пустила ни одного случая умеренной де-

менции в тестовой выборке. Более того, 

значение метрики Specificity для дан-

ного класса, также равное 1,00, свиде-

тельствует полном отсутствии ложнопо-

ложительных срабатываний. Однако 

анализ других классов выявил опреде-

лённые ограничения. В частности, зна-

чение Recall для класса Very Mild 

Demented составило 0,64, а для класса 

Non Demented – 0,76. Это указывает на 

то, что модель значительно хуже распо-

знаёт ранние или незатронутые формы 

когнитивного состояния. Общий анализ 

ROC-кривых показывает, что модель об-

ладает высокой дискриминационной 

способностью для большинства классов, 

особенно для Moderate Demented и Mild 

Demented. Более низкие значения AUC 

для Non Demented и Very Mild Demented 

могут свидетельствовать о том, что для 

этих классов существует большая сте-

пень перекрытия признаков, что затруд-

няет их точную дифференциацию. 

Также это может быть обусловлено низ-

кой выраженностью признаков на МРТ-

снимках и частичной схожестью струк-

турных изменений на ранних этапах за-

болевания. 

В таблице 1 приведены значения 

метрики AUC-ROC, полученные авто-

рами [19] в ходе вышеупомянутого ис-

следования для четырех НМ на основе 

СНС (GoogLeNet, DenseNet-121, 

GoogLeNet на основе объединения при-

знаков, DenseNet-121 на основе объеди-

нения признаков), а также результаты, 

полученные в ходе описанного в данной 

работе исследования для модифициро-

ванной архитектуры EfficientNetB3. 

Таблица 1. Значения метрики AUC-ROC для [19] и модифицированной архитектуры EfficientNetB3 

Table 1. AUC-ROC metric values for [19] and modified EfficientNetB3 architecture 

Класс 

НМ 

GoogLe

Net 

DenseNet-

121 

GoogLeNet 

на основе 

объедине-

ния при-

знаков 

DenseNet-121 

на основе 

объединения 

признаков 

модифициро-

ванная архи-

тектура 

EfficientNetB3 

AUC % 

Отсутствие признаков 

деменции 

(Non Demented) 

97,25 96,84 98,25 98,10 87,00 

Очень лёгкая деменция 

(Very Mild Demented) 
94,69 95,79 96,67 97,54 86,00 

Легкая деменция  

(Mild Demented) 
92,51 91,49 97,52 97,95 95,00 

Умеренная деменция 

(Moderate Demented) 
85,72 89,12 84,56 94,64 100,00 
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Анализ этих значений показывает, 

что результаты модифицированной ар-

хитектуры EfficientNetB3, несмотря на 

их асимметричность, являются конку-

рентоспособными и выгодно отлича-

ются от подходов, описанных в ряде со-

временных исследований. В работах, где 

применяются базовые архитектуры НМ, 

такие как VGG-16 или ResNet-18, часто 

сообщается о проблеме снижения точно-

сти на миноритарных или сложных для 

дифференциации классах. Например, в 

исследовании [20] модель ResNet18, 

хотя и показала высокую общую точ-

ность, демонстрировала заметно более 

низкие показатели метрики Recall для 

ранних стадий заболевания, что указы-

вает на трудности с идентификацией 

специфических паттернов. 

Выводы 

В данной работе проведена оценка 

эффективности НМ на основе модифи-

цированной архитектуры EfficientNetB3 

с применением трансферного глубо-

кого обучения для дифференциальной 

диагностики стадий болезни Альцгей-

мера. Результаты, продемонстрирован-

ные модифицированной архитектурой 

EfficientNetB3, характеризуются выра-

женной асимметрией и указывают на уз-

коспециализированный характер дан-

ной модели. С одной стороны, НМ про-

явила себя как эффективный инстру-

мент для диагностики стадии умеренной 

деменции, продемонстрировав макси-

мально возможное значение AUC, рав-

ное 1,00. Этот факт свидетельствует о 

способности детектировать и интерпре-

тировать комплекс патологических из-

менений, характерных для данной выра-

женной стадии заболевания. С другой 

стороны, эффективность классификации 

для остальных классов («Отсутствие де-

менции», «Очень лёгкая деменция» и 

«Лёгкая деменция») оказалась суще-

ственно ниже не только в абсолютном 

выражении, но и по сравнению с альтер-

нативными подходами, основанными на 

комбинации признаков. Значения AUC 

для классов «Отсутствие деменции» 

(0,87), «Очень лёгкая деменция» (0,86) и 

«Лёгкая деменция» (0,95) являются са-

мыми низкими среди всех представлен-

ных в таблице 1 моделей, за исключе-

нием базовых версий GoogLeNet и 

DenseNet-121 для некоторых классов. 

Такая диспропорция позволяет предпо-

ложить, что в процессе обучения или 

проектирования архитектура приобрела 

высокую специфичность к признакам, 

релевантным именно для умеренной де-

менции, потенциально в ущерб чувстви-

тельности к более ранним проявлениям 

нейродегенеративного процесса. 

Таким образом, можно сделать вы-

вод, что основная практическая цен-

ность модификации архитектуры 

EfficientNetB3 может заключается в ее 

использовании в составе гетерогенных 

ансамблей или каскадных системах диа-

гностики для верификации конкретной 

стадии БА – умеренной деменции с це-

лью повышения общей эффективности 

системы. Это указывает на перспектив-

ность дальнейших исследований в 
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области создания узкоспециализиро-

ванных архитектур, способных решать 

конкретные подзадачи с высокой 

точностью, превосходящей универсаль-

ные, но менее сфокусированные под-

ходы. 
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