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Резюме 

Цель исследования. Высокая степень распространения динамической подписи в различных областях, свя-

занных с биометрическими технологиями (во многих странах четко сформулированы правовые процедуры 

для их использования), обусловливает значительное внимание к достоверности соответствующих алго-

ритмов биометрической аутентификации. Динамическая подпись частично свободна от недостатков, 

свойственных статической подписи, однако и для нее остро стоит проблема достоверности аутентифи-

кации пользователя информационными сервисами, обусловленная совокупностью разнородных факторов, 

поэтому целью проведенного исследования является повышение достоверности аутентификации пользо-

вателя по реализации его динамической подписи на основе экспериментально-структурного и параметри-

ческого синтеза проблемно ориентированных нейронных сетей и сравнения достоверности с классиче-

скими алгоритмами обнаружения-различений многомерных сигналов. 

Методы. Алгоритм комплексной идентификации динамической сигнатуры подписи пользователя в про-

странстве отсчетов многомерных кривых в форме параллельного распознавания многомерного фраг-

мента кривой различными обнаружителями / классификаторами с последующим комплексированием и ана-

лизом результатов. 

Результаты. Экспериментально исследованы алгоритмы нейросетевой идентификации динамической 

сигнатуры подписи пользователя в пространстве отсчетов многомерных кривых в сравнении с оптималь-

ными алгоритмами обнаружения-различений многомерных сигналов. Эксперименты показали, что 3‒5 ос-

новных параметров: две координаты пера в плоскости реализации планшета, давление на экран в совокуп-

ности с векторами скорости пера ‒ обеспечивают приемлемую достоверность идентификации в интер-

вале 0,8…0,95 в условиях малого числа пользователей и сохраняются на уровне 0,7 при их неограниченном 

увеличении. Средний выигрыш от применения разработанных моделей и алгоритмов идентификации под-

писи по сравнению со статистическими методами составил 25‒35%, по сравнению с метрическими – от 5 

до 15%. 

Заключение. Для обеспечения заданных показателей надежности аутентификации пользователя необхо-

димо декомпозировать аппаратно-программные модели идентификации динамической подписи по группам 

небольшого числа пользователей. Существуют оптимальное число и набор алгоритмов, которые достав-

ляют максимум достоверности результата комплексирования: метрический в евклидовой метрике, корре-

ляционный и нейросетевой. 

 

Ключевые слова: динамическая подпись; идентификация; многослойная нейронная сеть; алгоритм Куль-
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_______________________ 

© Танцеров А. Х., Данилов Е. А., 2025 

https://doi.org/10.21869/2223-1536-2025-15-4-150-161


Танцеров А. Х., Данилов Е. А.     Исследования алгоритмов нейросетевого распознавания динамической…   151 

Proceedings of the Southwest State University. Series: Control, Computer Engineering,  
Information Science. Medical Instruments Engineering. 2025;15(4):150–161 

Конфликт интересов: Авторы декларируют отсутствие явных и потенциальных конфликтов интере-

сов, связанных с публикацией настоящей статьи. 

Для цитирования: Танцеров А. Х., Данилов Е. А. Исследования алгоритмов нейросетевого распознавания ди-

намической подписи пользователя в пространстве отсчетов многомерных кривых в сравнении с оптимальными 

алгоритмами обнаружения-различений многомерных сигналов // Известия Юго-Западного государственного 

университета. Серия: Управление, вычислительная техника, информатика. Медицинское приборостроение. 

2025. Т. 15, № 4. С. 150–161. https://doi.org/10.21869/2223-1536-2025-15-4-150-161 

 

Поступила в редакцию 08.10.2025  Подписана в печать 06.11.2025  Опубликована 26.12.2025 

 

Research on neural network algorithms for user dynamic signature 

recognition in the space of multidimensional curve samples,  

in comparison with optimal detection–discrimination algorithms  

for multidimensional signals 

Alexander K. Tantserov1, Evgeny A. Danilov1  

1 Penza State Technological University  

1a / 11 Baydukov pass. / Gagarin Str., Penza 440039, Russian Federation 

 e-mail: danilov@penzgtu.ru 

Abstract 

Purpose of research. The widespread adoption of dynamic signatures in various biometric technology applications-

supported by clearly defined legal procedures in many countries-drives significant attention toward the reliability of 

corresponding biometric authentication algorithms. While dynamic signatures are partially free from the drawbacks 

inherent in static signatures, the problem of authentication reliability remains critical due to the complex interplay of 

heterogeneous factors. Therefore, the aim of this study is to improve the reliability of user authentication based on the 

dynamic signature using experimental structural and parametric synthesis of problem-oriented neural networks and 

comparison with classical detection-discrimination algorithms for multidimensional signals. 

Methods. The proposed method involves comprehensive identification of the user's dynamic signature in the sample 

space of multidimensional curves by means of parallel recognition of curve fragments using multiple detectors/classifi-

ers, followed by integration and analysis of the results. 

Results. Neural network algorithms for identifying the user’s dynamic signature in the sample space of multidimen-

sional curves were experimentally studied and compared with optimal detection-discrimination algorithms for multidi-

mensional signals. The experiments demonstrated that 3–5 key parameters-including two stylus coordinates on the 

tablet plane, screen pressure, and stylus velocity vectors-ensure acceptable identification reliability in the range of 0,8 

to 0,95 for a small number of users, and maintain a reliability level of about 0,7 with unlimited user scaling. The average 

gain in accuracy from using the developed models and algorithms, compared to statistical methods, amounted to 25–

35%, and compared to metric methods, 5–15%. 

Conclusion. To achieve the required reliability of user authentication, hardware-software identification models for dy-

namic signatures should be decomposed into groups with a limited number of users. There exists an optimal combina-

tion of algorithms that delivers maximum accuracy in result integration: Euclidean metric, correlation-based, and neural 

network classifiers. 
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Введение 

Динамические биометрические ме-

тоды аутентификации приобретают мас-

совое распространение в большинстве 

персональных [1] и корпоративных элек-

тронных устройств и систем [2]. Однако 

для динамической подписи остро стоит 

проблема достоверности аутентифика-

ции, обусловленная зависимостью ее ре-

ализации от параметров датчико-преоб-

разующей аппаратуры, вариабельно-

стью постановки для одного и того же 

носителя [3], обусловленной эмоциями, 

стрессом, усталостью, влиянием алко-

голя или психотропных веществ, нейро-

моторными изменениями после приема 

лекарств, эффектами биологического 

старения, когнитивно-моторными нару-

шениями, настроением человека, време-

нем, доступным для постановки под-

писи [4], или, собственно, готовностью к 

взаимодействию с системой аутентифи-

кации личности [5]. При этом актуаль-

ной является проблема, характеризую-

щаяся непредсказуемостью, межлич-

ностной изменчивостью, позволяющая 

реализовать не обнаруживаемую со 

100% вероятность подделки [6]. Одним 

из направлений разрешения данной про-

блемы является расширение простран-

ства признаков идентификации [7] и ре-

гуляризация решения задачи распозна-

вания, обусловленной ненаблюдаемыми 

состояниями пользователя и аппаратуры 

регистрации, на основе методологии ре-

шения некорректных задач [8]. Для мно-

гомерных кривых динамической под-

писи задача заключается в инвариант-

ном представлении комбинаторного 

множества идентифицируемых матема-

тических объектов и поиске оптималь-

ного классификационного решения для 

ограниченного объема внутриклассовых 

выборок [9]. Современное направление, 

активно развивающееся для работы с 

большими объемами и подобным харак-

тером идентифицируемых данных, 

представлено методологией и сред-

ствами машинного обучения [9]. 

Материалы и методы 

Исходными данными для решения 

задачи идентификации пользователя яв-

ляются шаблоны его динамической сиг-

натуры подписи, представленные в виде 

многомерной кривой [10]. В качестве 

фактуры исходных данных для синтеза 

таких шаблонов используются открытые 

базы данных, содержащие до десятка па-

раметров, динамической реализации под-

линной и поддельной подписи пользова-

теля [11]. Шаблон (или эталон) представ-

ляет собой математическую кривую, вло-

женную в многомерное (по числу пара-

метров) пространство (рис. 1), как ре-

зультат таксономии множества реализа-

ций динамической подписи одного и 

того же пользователя [12]. 
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Рис. 1. Пример реализации девятимерной кривой – образца динамической подписи на интервале  

            180 отсчетов (2,5 с): а ‒ координата пера x; б ‒ координата пера y; в – давление пера;  

             г ‒ площадь контакта; д ‒ скорость пера по оси x; е ‒ скорость пера по оси y 

Fig. 1. Example of the implementation of a nine-dimensional curve, representing a dynamic signature  

           sample over an interval of 180 samples (2,5 s): a ‒ pen x-coordinate; б ‒ pen y-coordinate;  

           в ‒ pen pressure; г ‒ contact area; д ‒ pen velocity along the x-axis; е ‒ pen velocity along the y-axis 

Основным инструментом для распо-

знавания фрагментов многомерной кри-

вой подписи является многослойная 

нейронная сеть (НС) BProp [13], архи-

тектура которой представлена ниже 

(рис. 2, a).  

  

a                                                              б 

Рис. 2. Применение алгоритмов распознавания динамической подписи: а ‒ архитектура многослойной 
             нейронной сети; б ‒ общая схема взаимодействия модулей распознавания  

Fig. 2. Application of dynamic signature recognition algorithms: а ‒ architecture of a multilayer  
           neural network; б ‒ general scheme of interaction of recognition modules 

Описание процесса постановки дина-

мической подписи [14] и процесса распо-

знавания (для повышения достоверности 

и надежности) несколькими алгорит-

мами [15] с последующим мажоритар-

ным голосованием организуется в 
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соответствии со схемой взаимодействия 

модулей (рис. 2, б).  

В основе исследовательской базы 

данных и доказательной фактуры насто-

ящих исследований лежит база данных 

MOBLSIG [16], представляющая собой 

набор динамических подписей 83 поль-

зователей (49 мужчин, 34 женщины), 

полученных с помощью мобильного 

устройства с емкостным сенсорным 

экраном (планшет Nexus 9, Android 6.0) 

[17]. Данные каждого пользователя со-

держат 45 истинных и 20 поддельных ре-

ализаций его подписи, каждая из кото-

рых представлена в формате файла 

«*.csv» (рис. 3). 

 
Рис. 3. Исходное файловое представление динамической подписи 

Fig. 3. Original file representation of a dynamic signature 

Файл содержит от 120 до 160 отсче-

тов по одиннадцати параметрам динами-

ческой подписи, из которых в силу за-

шумленности и слабой информативно-

сти используются восемь: 

1) x – проекция текущего положения 

пера на ось x; 

2) y – проекция текущего положения 

пера на ось y; 

3) pressure – текущая сила давления 

пера на экран; 

4) velocityx – проекция вектора ско-

рости пера на ось x; 

5) velocityy – проекция вектора ско-

рости пера на ось y; 

6) accelx – проекция ускорения пера 

на ось x; 

7) accely – проекция ускорения пера 

на ось y. 

8) accelz – проекция ускорения пера 

на ось z. 

Рассмотрим общую структуру ма-

кета программного комплекса модели-

рования процессов эталонирования и 

распознавания реализаций динамиче-

ской подписи пользователя (рис. 4). 

 
Рис. 4. Общая структура макета программного комплекса 

Fig. 4. General structure of the software system prototype 
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В результате реализации сценария 

образования обучающих и проверочных 

выборок формируются параллелепи-

педы размерностью n = 3 с размерами 

[l1, l2, l3], где l1 – число реализаций дина-

мической подписи; l2 – максимальная 

длительность подписи (отсчётов); l3 – 

число кривых каждой подписи.  

Нейросетевые алгоритмы распознава-

ния используют два типа архитектуры се-

тей – со скалярной и векторной функцией 

выхода (вида [‒1, ‒1, … ‒1, 1, ‒1,…, ‒1], 

где позиция единицы как компонент век-

тора указывает на реализацию конкрет-

ного пользователя) (рис. 5). Корректи-

ровка весов осуществлялась на основании 

алгоритма Левенберга ‒ Марквардта [7]: 
1( 1) ( ) ( ( ) ( ) )

 ( )( ( ) ( ( ) ( ))),

T

j j j j

T

j j j

w k w k J k J k I

J k d k f w k x k

−+ = + +  

 −
 
(1)

 

где χ – скалярный параметр; I – единичная 

матрица; ( )jd k  – выход j-го нейрона вы-

ходного слоя; ( )( )( ) T
Wj jjJ k f x kw=   – 

якобиан, матрица частных производных 

по весам wj на k-й итерации обучения. 

По результатам обучения формиру-

ются графики сходимости НС и визуали-

зируются кривые подписей, использо-

ванные как входные векторы (рис. 6). 

 
Рис. 5. Архитектуры НС вида BProp для идентификации многомерной  
             реализации динамической подписи 

Fig. 5. BProp-type neural network architectures for multidimensional dynamic  
            signature identification 

 
Рис. 6. Кривые подписей, использованные как входные векторы НС 

Fig. 6. Signature curves used as input vectors of the neural network 



156                   Распознавание и обработка изображений / Image Recognition and Processing 

Известия Юго-Западного государственного университета. Серия: Управление,  
вычислительная техника, информатика. Медицинское приборостроение. 2025;15(4):150–161 

Графический анализ такого рода 

данных позволяет экспертным способом 

оптимизировать процесс параметриче-

ского синтеза сети. 

Результаты и их обсуждение  

Число скрытых слоев НС в экспери-

ментах варьировалось от одного до 

четырех при максимальной длине одной 

реализации подписи в 260 отсчетах. На 

рисунке 7 представлены усредненные по 

30-ти точкам, 6-ти алгоритмам зависи-

мости достоверности идентификации 

пользователя от числа кривых его дина-

мической сигнатуры, участвующих в 

распознавании. 

 
Рис. 7. Усредненная зависимость достоверности идентификации от числа кривых  
             по выборке из 50-ти пользователей (в каждой точке графика усредненные  
             результаты распознавания 10-ти пользователей из протокола испытаний  
             (проверочной выборки), по 20 реализаций подписина каждого) 

Fig. 7. Average dependence of identification reliability on the number of curves for a sample  
           of 50 users (each point of the graph shows the averaged recognition results for 10 users  
           from the test protocol (validation set), with 20 signature realizations per user) 

Зависимость свидетельствует о том, 

что 3-5 основных параметров: две ко-

ординаты x и y в плоскости реализации 

планшета, давление на экран в сово-

купности с векторами скорости пера по 

x и y – обеспечивают приемлемую досто-

верность идентификации. 

Дальнейший рост числа кривых поз-

воляет незначительно повысить досто-

верность [18], при этом сильно увеличив 

ресурсоемкость вычислений, т. к. алго-

ритм Левенберга ‒ Марквардта требует 

построения матрицы Якоби J [19]: 

( )

( ) ( )

( ) ( )

T

1 1

1

1

,   

, ,
...

... ... ... ,

, ,
...

M

N N

M

H I J Ea

F x w F x w

w w

J

F x w F x w
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где F(xi,w) – значение выхода НС на i-й 

входной вектор X. 

На рисунке 8 приведена усреднён-

ная зависимость достоверности иденти-

фикации кривой (а по ней и пользова-

теля) в зависимости от числа примеров 

обучающей выборки и числа пользова-

телей. 
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Рис. 8. Зависимость достоверности идентификации динамической подписи в зависимости  
            от числа примеров обучающей выборки при фиксированном числе пользователей 

Fig. 8. Dependence of dynamic signature identification reliability on the number of training samples  
            for a fixed number of users 

Анализ кривых (рис. 8) позволяет 

предположить, что для обеспечения за-

данных показателей надежности аутен-

тификации пользователя необходимо 

декомпозировать аппаратно-программ-

ные модели идентификации динамиче-

ской подписи по группам небольшого 

числа пользователей [20]. 

На рисунке 9 представлены зависи-

мости идентификации динамической 

подписи пользователя от числа пользо-

вателей при фиксированных архитек-

турных параметрах НС, объемов обуча-

ющих ‒ проверочных выборок. 

 
Рис. 9. Зависимость достоверности идентификации динамической подписи пользователя  
             от числа пользователей (обучающих реализаций – 30, проверочных ‒ 15  
             по каждому пользователю, кривых – 5 [x, y, p, vx, vy]) 

Fig. 9. Dependence of dynamic signature identification reliability on the number of users  
            (30 training realizations and 15 test realizations per user, 5 curves per signature  
            [x, y, p, vx, vy])) 
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Графический анализ зависимостей 

(рис. 9) свидетельствует о преимуще-

ствах НС с векторной функцией выхода 

над остальными алгоритмами. Статисти-

ческий алгоритм Кульбака ‒ Лейблера 

предсказуемо показал низкую достовер-

ность в силу наличия шумов микротре-

мора руки при постановке, что может 

быть компенсировано адаптивным сгла-

живанием в схеме аппаратно-программ-

ного комплекса биометрической аутен-

тификации. Средний выигрыш от при-

менения разработанных моделей и алго-

ритмов идентификации подписи по 

сравнению со статистическими мето-

дами составил 25‒35%, по сравнению с 

метрическими – от 5 до 15%.  

Выводы 

Экспериментально исследованы ал-

горитмы нейросетевой идентификации 

динамической сигнатуры подписи поль-

зователя в пространстве отсчетов много-

мерных кривых в сравнении с оптималь-

ными алгоритмами обнаружения ‒ раз-

личений многомерных сигналов. Экспе-

рименты показали, что 3‒5 основных па-

раметров: две координаты пера в плос-

кости реализации планшета, давление на 

экран в совокупности с векторами ско-

рости пера ‒ обеспечивают приемлемую 

достоверность идентификации в интер-

вале 0,8…0,95 в условиях малого числа 

пользователей и сохраняются на уровне 

0,7 при их неограниченном увеличении. 

Для обеспечения заданных показа-

телей надежности аутентификации 

пользователя необходимо декомпозиро-

вать аппаратно-программные модели 

идентификации динамической подписи 

по группам небольшого числа пользова-

телей. Существует оптимальное число и 

набор алгоритмов, доставляющих мак-

симум достоверности результата ком-

плексирования: метрический в евклидо-

вой метрике, корреляционный и 

нейросетевой. Эксперименты показали 

преимущества НС с векторной функ-

цией выхода над остальными алгорит-

мами. Статистический алгоритм Куль-

бака ‒ Лейблера показал низкую досто-

верность в силу наличия шумов микрот-

ремора руки при постановке, что может 

быть компенсировано адаптивным сгла-

живанием в схеме аппаратно-программ-

ного комплекса биометрической аутен-

тификации. 
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