
22 Информационные и интеллектуальные системы / Information and Intelligent Systems

Известия Юго-Западного государственного университета. Серия: Управление,
вычислительная техника, информатика. Медицинское приборостроение. 2025;15(4):22–34

Оригинальная статья / Original article

https://doi.org/10.21869/2223-1536-2025-15-4-22-34

УДК 004.415.2

Проектирование ядра информационной системы

на основе workflow-движка

А. А. Пинаев1 , Р. А. Томакова1, Д. К. Реутов1, Д. А. Фомин1

1 Юго-Западный государственный университет

ул. 50 лет Октября, д. 94, г. Курск 305040, Российская Федерация

 e-mail: a59-info@yandex.ru

Резюме

Цель исследования заключается в разработке архитектуры ядра информационной системы, выполненной

на основе open-source workflow-движка Elsa Workflows, ориентированной на автоматизацию бизнес-процес-

сов на предприятиях малого и среднего бизнеса. Особое внимание уделено созданию гибкой, масштабируе-

мой и экономически эффективной информационной системы.

Методы. В работе использованы методы системного анализа для проведения сравнительного анализа

существующих решений, таких как Camunda, ELMA BPM. Сформулированы и обоснованы функциональные

и нефункциональные требования, предъявляемые к информационной системе. Разработан алгоритм функ-

ционирования ядра, реализован прототип архитектуры с использованием технологий .NET, PostgreSQL и

React. Осуществлено имитационное моделирование, проведены эксперименты.

Результаты. Предложена модульная архитектура системы, включающая подсистемы управления зада-

чами, мониторинга, уведомлений, интеграции и аналитики. Elsa Workflows представляет собой легковес-

ный, модульный и свободно распространяемый движок для платформы .NET. Его ключевые особенности

заключаются в поддержке кодовой и декларативной реализации процессов, визуального редактора, встро-

енной поддержки REST API и микросервисной архитектуры. Особое внимание уделено гибкости определе-

ния процессов: они могут быть выполнены как на C# (code-first подход), так и в декларативном виде – через

JSON или YAML. Реализована схема алгоритма функционирования жизненного цикла задачи с механизмами

обработки ошибок, возможностями постобработки и архивации информации. Доказана возможность созда-

ния эффективного workflow-ядра на платформе .NET, отличающаяся низкой стоимостью владения и высо-

кой степенью адаптивности.

Заключение. Использование open-source workflow-движка Elsa Workflows позволяет создать современное

ядро информационной системы, сочетающее гибкость, производительность и соответствие требова-

ниям импортозамещения. Предложенное решение может служить основой для цифровизации слабо авто-

матизированных производств и способствовать повышению операционной эффективности предприятий.

Ключевые слова: движок; информационная система; производственная система; автоматизация про-

цессов.

Конфликт интересов: Авторы декларируют отсутствие явных и потенциальных конфликтов интере-

сов, связанных с публикацией настоящей статьи.

Для цитирования: Проектирование ядра информационной системы на основе workflow-движка / А. А. Пинаев,

Р. А. Томакова, Д. К. Реутов, Д. А.Фомин // Известия Юго-Западного государственного университета. Серия:

Управление, вычислительная техника, информатика. Медицинское приборостроение. 2025. Т. 15, № 4. С. 22–

34. https://doi.org/ 10.21869/2223-1536-2025-15-4-22-34

Поступила в редакцию 16.10.2025 Подписана в печать 14.11.2025 Опубликована 26.12.2025

© Пинаев А. А., Томакова Р. А., Реутов Д. К., Фомин Д. А., 2025

https://doi.org/10.21869/2223-1536-2025-15-4-22-34
mailto:a59-info@yandex.ru
https://doi.org/%2010.21869/2223-1536-2025-15-4-22-

Пинаев А. А., Томакова Р. А., Реутов Д. К. и др. Проектирование ядра информационной системы … 23

Proceedings of the Southwest State University. Series: Control, Computer Engineering,
Information Science. Medical Instruments Engineering. 2025;15(4):22–34

Designing the core of an information system based on a workflow

engine: a comparative analysis of approaches

Aleksandr A. Pinaev1 , Rimma A. Tomakova1,

Dmitry K. Reutov1, Dmitry A. Fomin1

1 Southwest State University

50 Let Oktyabrya Str. 94, Kursk 305040, Russian Federation

 e-mail: a59-info@yandex.ru

Abstract

The purpose of the research is to develop the core architecture of an information system based on the open-source

workflow engine Elsa Workflows, focused on the automation of business processes in small and medium-sized busi-

nesses. Special attention is paid to the creation of a flexible, scalable and cost-effective information system.

Methods. The paper uses system analysis methods to conduct a comparative analysis of existing solutions such as

Camunda, ELMA BPM. The functional and non-functional requirements for the information system are formulated and

substantiated. An algorithm for the functioning of the core has been developed, and a prototype architecture using

technology has been implemented.NET, PostgreSQL, and React. Simulation modeling was carried out, experiments

were conducted.

Results. A modular system architecture is proposed, including subsystems for task management, monitoring, notifica-

tions, integration, and analytics. Elsa Workflows is a lightweight, modular and freely distributed engine for the .NET

platform. Its key features are support for code and declarative implementation of processes, visual editing, built-in

support for REST API and microservice architecture. Special attention is paid to the flexibility of defining processes:

they can be executed both in C# (code-first approach), and in a declarative form – via JSON or YAML. The scheme of

the algorithm for the functioning of the task's life cycle with error handling mechanisms, post-processing and information

archiving capabilities is implemented. The possibility of creating an effective workflow core on the platform has been

proven.NET, characterized by a low cost of ownership and a high degree of adaptability.

Conclusion. Using the Elsa Workflows open-source workflow engine allows you to create a modern information system

core that combines flexibility, productivity, and compliance with import substitution requirements. The proposed solution

can serve as a basis for digitalization of poorly automated industries and contribute to improving the operational effi-

ciency of enterprises.

Keywords: engine; information system; production system; process automation.

Conflict of interest: The Authors declare the absence of obvious and potential conflicts of interest related to the

publication of this article.

For citation: Pinaev A.A., Tomakova R.A., Reutov D.K., Fomin D.A. Designing the core of an information system

based on a workflow engine: a comparative analysis of approaches. Izvestiya Yugo-Zapadnogo gosudarstvennogo

universiteta. Serija: Upravlenie, vychislitel'naja tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the

Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engi-

neering. 2025;15(4):22–34. (In Russ.) https://doi.org/10.21869/2223-1536-2025-15-4-22-34

Received 16.10.2025 Accepted 14.11.2025 Published 26.12.2025

Введение

Цифровизация промышленности

требует не только внедрения новых тех-

нологий, но и переосмысления подхо-

дов к управлению производственными

процессами. На предприятиях с разроз-

ненной IT-инфраструктурой процессы

часто выполняются частично вручную,

что приводит к задержкам, ошибкам и от-

сутствию прозрачности исполнения [1].

mailto:a59-info@yandex.ru
https://doi.org/10.21869/2223-1536-2025-15-4-22-34

24 Информационные и интеллектуальные системы / Information and Intelligent Systems

Известия Юго-Западного государственного университета. Серия: Управление,
вычислительная техника, информатика. Медицинское приборостроение. 2025;15(4):22–34

Одним из наиболее эффективных

способов повышения управляемости и

автоматизации является применение

workflow-подхода, при котором бизнес-

процессы моделируются, исполняются и

контролируются централизованно. Яд-

ром такой системы становится workflow-

движок – программный компонент, от-

вечающий за координацию шагов,

управление состоянием, контроль сро-

ков и взаимодействие с пользователями

и внешними системами [2].

Среди существующих решений вы-

деляется Camunda – мощная и широко

используемая платформа, основанная на

стандарте BPMN 2.0. Она активно при-

меняется в крупных корпорациях благо-

даря своей зрелости, поддержке слож-

ных сценариев и развитой экосистемы.

Однако её использование связано с ря-

дом ограничений: высокая стоимость

лицензирования, сложность настройки и

зависимость от Java-экосистемы [3].

В этих условиях особую актуаль-

ность приобретают open-source альтер-

нативы, совместимые с современными

стеками разработки и адаптированные к

требованиям российского рынка. Одним

из таких решений является Elsa

Workflows – легковесный, модульный и

свободно распространяемый движок для

платформы .NET. Его ключевые особен-

ности: поддержка кодовой и декларатив-

ной реализации процессов, визуальный

редактор, встроенная поддержка REST

API и микросервисной архитектуры [4].

Цель данной статьи – продемонстри-

ровать возможность использования Elsa

Workflows в качестве ядра информацион-

ной системы, проанализировать его

функциональные возможности, сравнить

с Camunda и предложить архитектуру си-

стемы, ориентированную на предприя-

тия малого и среднего бизнеса.

Материалы и методы

Анализ существующих решений

и выбор архитектурного подхода

В современной IT-экосистеме авто-

матизация бизнес-процессов вышла на

первый план как ключевой элемент циф-

ровой трансформации предприятий [1].

На рынке представлено множество ре-

шений (от мощных корпоративных плат-

форм до легковесных open-source движ-

ков). Однако выбор подходящего

workflow-движка требует тщательного

анализа не только функциональных воз-

можностей, но и таких факторов, как

стоимость владения, сложность внедре-

ния, масштабируемость и соответствие

стратегии развития компании [2].

Одним из наиболее зрелых и при-

знанных в индустрии решений является

Camunda Platform. Эта система, постро-

енная на стандарте BPMN 2.0, зареко-

мендовала себя как надёжное ядро для

управления сложными бизнес-процес-

сами в крупных организациях. Её архи-

тектура позволяет моделировать про-

цессы высокой степени детализации,

поддерживает широкий спектр шлюзов,

условных ветвлений, параллельных по-

токов и событий. Интеграция с Java-эко-

системой (Spring Boot, Jakarta EE) делает

её естественным выбором для enterprise-

приложений. Кроме того, Camunda пред-

лагает развитый веб-интерфейс (Cockpit),

обеспечивающий мониторинг выполне-

ния процессов, анализ производительно-

сти и диагностику ошибок [4].

Несмотря на свои сильные стороны,

Camunda имеет ряд существенных огра-

ничений. Во-первых, лицензирование

коммерческих версий может быть доро-

гостоящим, особенно для малых и сред-

них предприятий [5]. Во-вторых, си-

стема обладает значительной

Пинаев А. А., Томакова Р. А., Реутов Д. К. и др. Проектирование ядра информационной системы … 25

Proceedings of the Southwest State University. Series: Control, Computer Engineering,
Information Science. Medical Instruments Engineering. 2025;15(4):22–34

сложностью, что требует привлечения

квалифицированных специалистов как

на этапе внедрения, так и в процессе со-

провождения [6]. В-третьих, зависи-

мость от JVM (Java Virtual Machine) мо-

жет создавать проблемы для организа-

ций, чья IT-инфраструктура основана на

экосистеме Microsoft. Эти факторы де-

лают Camunda менее доступным реше-

нием для компаний, стремящихся к

быстрой и экономичной цифровизации

без привязки к дорогому лицензионному

ПО [7].

На фоне доминирования Java-реше-

ний всё большую популярность приоб-

ретают open-source альтернативы, ори-

ентированные на другие технологиче-

ские стеки. Одним из наиболее перспек-

тивных проектов в .NET-экосистеме яв-

ляется Elsa Workflows, который позици-

онируется как «легкий и гибкий work-

flow-движок для платформы .NET», что

напрямую соответствует запросам на

гибкость и низкий порог входа [8]. В от-

личие от Camunda, Elsa не стремится

охватить весь стандарт BPMN, а фокуси-

руется на предоставлении достаточного

набора примитивов для реализации ти-

повых сценариев: последовательные и

параллельные задачи, условия, пользо-

вательские действия, HTTP-вызовы,

таймеры и события [9].

Архитектурно Elsa Workflows отли-

чается модульностью и лёгкостью инте-

грации. Будучи построенной на

ASP.NET Core, она бесшовно встраива-

ется в современные .NET-приложения,

использует встроенную систему DI

(Dependency Injection) и совместима с

Entity Framework Core для хранения со-

стояний процессов [10]. Это позволяет

разработчикам быстро разворачивать

ядро workflow-системы без необходи-

мости настройки сложной внешней ин-

фраструктуры. Особое внимание уде-

лено гибкости определения процессов:

они могут быть описаны как на C# (code-

first подход), так и в декларативном

виде – через JSON или YAML. Такой

двойственный подход открывает воз-

можности как для разработчиков, так и

для low-code сценариев, где бизнес-ана-

литики могут редактировать процессы

через визуальный редактор [11].

Сравнительный анализ показывает,

что Elsa Workflows не конкурирует с

Camunda напрямую, а занимает свою

нишу – гибкие, недорогие и быстро раз-

вёртываемые решения для МСП и внут-

ренних систем корпораций [12]. Тогда

как Camunda применима для масштаб-

ных проектов, Elsa подходит для быст-

рого решения конкретных задач. Напри-

мер, автоматизация согласования за-

явок, управление жизненным циклом

документов или координация действий

в рамках микросервисной архитек-

туры [13].

В условиях, когда в России усилива-

ется тренд на импортозамещение и раз-

витие собственных IT-решений, open-

source проекты на базе .NET становятся

особенно привлекательными. Они поз-

воляют компаниям снизить зависимость

от иностранных вендоров, обеспечить

полный контроль над исходным кодом и

адаптировать систему под специфиче-

ские требования [14]. Именно в этом

контексте использование Elsa Workflows

как ядра информационной системы при-

обретает особую актуальность. Она со-

четает в себе преимущества современ-

ной .NET-платформы, открытости и про-

стоты, предлагая достойную альтерна-

тиву коммерческим аналогам [15].

26 Информационные и интеллектуальные системы / Information and Intelligent Systems

Известия Юго-Западного государственного университета. Серия: Управление,
вычислительная техника, информатика. Медицинское приборостроение. 2025;15(4):22–34

Архитектура системы на основе Elsa

Workflows

При проектировании информацион-

ной системы, основанной на workflow-

движке, ключевым элементом является

выбор архитектурного подхода, который

обеспечивает не только функциональ-

ную полноту, но и такие критически

важные качества, как гибкость, масшта-

бируемость, безопасность и простота со-

провождения. В рамках данного иссле-

дования предлагается архитектура, в ко-

торой Elsa Workflows выступает в роли

центрального координатора бизнес-про-

цессов, интегрированного в современ-

ную .NET-платформу. Такой подход

позволяет реализовать ядро системы,

предназначенное для эффективного

управления жизненным циклом задач,

координирования взаимодействия между

подразделениями с целью обеспечения

сбора данных для последующего ана-

лиза.

1. Бэкенд (ASP.NET Core Web API).

Система строится на модульной архи-

тектуре, где каждый компонент отвечает

за свою функциональную область, что

соответствует принципам микросервис-

ного подхода и облегчает дальнейшее

масштабирование. Основу системы со-

ставляет ASP.NET Core Web API, выпол-

няющий роль бэкенда и обеспечиваю-

щий взаимодействие с клиентскими при-

ложениями через RESTful интерфейсы.

Именно здесь размещается движок Elsa

Workflows, интегрированный как часть

хост-приложения [16]. Благодаря встро-

енной системе Dependency Injection и

middleware-механизмам ASP.NET Core,

Elsa получает доступ ко всем необходи-

мым сервисам: базе данных, системе

логирования, аутентификации и внеш-

ним API [17].

2. Elsa Workflows Engine. Централь-

ным элементом архитектуры является

сам workflow-движок, реализованный на

основе Elsa Core. Он отвечает за за-

грузку, выполнение и контроль состоя-

ния процессов, а также за управление пе-

реходами между шагами (активно-

стями). Каждый процесс представляет

собой формализованную последователь-

ность действий, которая может вклю-

чать пользовательские задачи, автомати-

ческие вызовы внешних сервисов, усло-

вия ветвления и таймеры. Одним из клю-

чевых преимуществ Elsa является воз-

можность определять процессы двумя

способами: программно, на языке C#,

или декларативно – через JSON или

YAML. Это делает систему универсаль-

ной: разработчики могут использовать

code-first подход для создания сложных

логик, тогда как бизнес-аналитики могут

редактировать процессы через визуаль-

ный редактор без необходимости вно-

сить изменения в код [1].

Программная реализация процесса

на C# обеспечивает высокую степень ти-

побезопасности и удобства разработки.

Процесс описывается как класс, реали-

зующий интерфейс IWorkflow, а его

структура строится с помощью fluent-

синтаксиса. Например, процесс согласо-

вания заявки может начинаться с логи-

рования события, затем переходить к

пользовательской задаче, назначенной

конкретному сотруднику, и завершаться

HTTP-запросом к ERP-системе [4].

Рассмотрим схему алгоритма ра-

боты ядра информационной системы

(рис. 1).

Пинаев А. А., Томакова Р. А., Реутов Д. К. и др. Проектирование ядра информационной системы … 27

Proceedings of the Southwest State University. Series: Control, Computer Engineering,
Information Science. Medical Instruments Engineering. 2025;15(4):22–34

Рис. 1. Схема алгоритма работы ядра информационной системы

Fig. 1. Block diagram of the algorithm for the core operation of the information system

28 Информационные и интеллектуальные системы / Information and Intelligent Systems

Известия Юго-Западного государственного университета. Серия: Управление,
вычислительная техника, информатика. Медицинское приборостроение. 2025;15(4):22–34

Все этапы контролируются движ-

ком, который сохраняет состояние про-

цесса между шагами и гарантирует

надежное выполнение даже в случае

сбоев. При этом каждая активность мо-

жет быть расширена через механизмы

событий, позволяя добавлять кастомную

логику (например, отправку уведомле-

ния или запись в журнал) [5].

Декларативный подход, основан-

ный на JSON, особенно ценен в усло-

виях low-code среды. Определение про-

цесса представляется в виде структури-

рованного документа, содержащего спи-

сок активностей, их параметры и связи.

Такой формат легко сериализуется, хра-

нится в базе данных или файловой си-

стеме и может быть изменён без перес-

борки приложения. Это открывает воз-

можности для динамического управле-

ния процессами, включая версионирова-

ние, тестирование A/B и быстрое реаги-

рование на изменения в бизнес-логике.

Кроме того, JSON-описания можно ре-

дактировать в веб-интерфейсе Elsa

Studio, что делает систему доступной

для нетехнических пользователей.

3. Фронтенд (Blazor / React). Фрон-

тенд системы реализуется как одностра-

ничное приложение (SPA), которое мо-

жет быть построено на различных техно-

логиях в зависимости от требований. В

качестве одного из вариантов рассмат-

ривается использование React, который

позволяет реализовать компонентную

архитектуру, где каждый элемент UI – от

списка задач до формы согласования –

является независимым модулем. Через

библиотеку axios или fetch фронтенд вза-

имодействует с бэкенд-частью, получая

данные о текущих задачах, процессах и

уведомлениях. Однако, учитывая, что

вся система построена на .NET, альтер-

нативным решением может стать Blazor

WebAssembly, позволяющий писать

фронтенд на C# и использовать единый

язык программирования на всех уров-

нях. Выбор между React и Blazor [15] за-

висит от стратегии развития компании,

наличия команды разработчиков и тре-

бований к производительности [18].

4. Система управления базами дан-

ных (PostgreSQL). Хранение данных

осуществляется с использованием реля-

ционной базы данных, такой как

PostgreSQL или SQL Server, через Entity

Framework Core. В базе хранятся не

только метаданные о пользователях, за-

дачах и правах доступа, но и полная ис-

тория выполнения процессов: экзем-

пляры workflow, их состояние, журналы

выполнения активностей и временные

метки. Это обеспечивает прозрачность и

возможность аудита, что особенно

важно для корпоративных систем [19].

Архитектура persistence-слоя Elsa позво-

ляет легко переключаться между различ-

ными провайдерами, что повышает гиб-

кость и адаптивность системы к разным

окружениям [20].

5. Elsa Dashboard. Важной частью

архитектуры является Elsa Dashboard –

веб-интерфейс, предназначенный для

администрирования и мониторинга про-

цессов. Через него можно просматри-

вать список определений и запущенных

Пинаев А. А., Томакова Р. А., Реутов Д. К. и др. Проектирование ядра информационной системы … 29

Proceedings of the Southwest State University. Series: Control, Computer Engineering,
Information Science. Medical Instruments Engineering. 2025;15(4):22–34

экземпляров, редактировать процессы,

запускать их вручную и анализировать

ошибки. Этот инструмент особенно по-

лезен на этапах разработки и тестирова-

ния, а также для технической под-

держки.

Особое внимание уделяется без-

опасности и контролю доступа. Система

использует механизм аутентификации

на основе JWT-токенов, интегрирован-

ный в ASP.NET Core Identity. Авториза-

ция реализована по принципу RBAC

(Role-Based Access Control), где каж-

дому пользователю назначается одна

или несколько ролей, определяющих его

права. Например, исполнитель может

видеть только свои задачи, менеджер –

все задачи своего подразделения, а ад-

министратор – имеет полный доступ.

Все действия в системе логируются, что

позволяет вести учёт изменений и опера-

тивно реагировать на инциденты.

Интеграция с внешними системами

обеспечивается через HTTP-активности,

очереди сообщений (например, RabbitMQ)

и фоновые службы. Это позволяет орга-

низовать взаимодействие с ERP, CRM,

почтовыми серверами и IoT-устрой-

ствами. Например, после завершения

процесса система может автоматически

отправить документ в 1С, уведомить

ответственного через Telegram или запу-

стить обработку данных в аналитиче-

ской платформе. Такой подход превра-

щает workflow-движок в центральную

шину интеграции, объединяющую раз-

розненные системы в единое информа-

ционное пространство [10].

Таким образом, предложенная архи-

тектура представляет собой сбалансиро-

ванное решение, сочетающее в себе

мощь .NET-платформы, открытость и

гибкость open-source проекта Elsa

Workflows, а также современные под-

ходы к разработке программного обес-

печения [12]. Она ориентирована на

предприятия малого и среднего бизнеса,

нуждающиеся в экономичных, быстро

внедряемых и легко настраиваемых си-

стемах автоматизации. В отличие от тра-

диционных решений, таких как

Camunda, данная архитектура не требует

значительных затрат на лицензирование

и консалтинг, что делает её особенно ак-

туальной в условиях импортозамещения

и цифровой трансформации российских

предприятий.

Результаты и их обсуждение

Приведем в качестве примера фраг-

мент реализации процесса «Согласова-

ние заявки» на языке C#:

public class ApprovalWorkflow : IWorkflow

{

 public void Build(IWorkflowBuilder builder)

 {

 builder

 .StartWith<LogMessage>(x => x.Message = "Начало процесса")

30 Информационные и интеллектуальные системы / Information and Intelligent Systems

Известия Юго-Западного государственного университета. Серия: Управление,
вычислительная техника, информатика. Медицинское приборостроение. 2025;15(4):22–34

 .Then<UserTask>(

 x => x.Description = "Согласовать заявку",

 x => x.Users = new[] { "manager@company.ru" }

)

 .Then<HttpRequestTask>(

 x => x.Method = HttpMethod.Post,

 x => x.Url = "https://erp/api/tasks/approve"

)

 .Then<LogMessage>(x => x.Message = "Задача согласована");

 }

}

Преимущества предлагаемого

решения

Предложенная архитектура инфор-

мационной системы, построенная на ос-

нове open-source workflow-движка Elsa

Workflows и платформы .NET, демон-

стрирует высокую степень соответствия

современным требованиям к цифровиза-

ции промышленных предприятий. Её

ключевые достоинства заключаются не

только в технической реализации, но и в

стратегической значимости для малых и

средних компаний, стремящихся к эф-

фективной автоматизации без чрезмер-

ных затрат и зависимости от внешних

вендоров.

Одним из наиболее существенных

преимуществ предлагаемой системы яв-

ляется её гибкость и адаптивность. В от-

личие от монолитных решений, таких

как ELMA или Camunda, которые тре-

буют длительного внедрения и дорого-

стоящей кастомизации, архитектура на

базе Elsa позволяет быстро разворачи-

вать новые процессы и оперативно реа-

гировать на изменения в бизнес-логике.

Это особенно важно для слабо автомати-

зированных производств, где процессы

часто изменяются под влиянием внеш-

них факторов: колебаний спроса,

обновления нормативной базы или ре-

структуризации подразделений. Воз-

можность описывать процессы как про-

граммным кодом на C#, так и в деклара-

тивном виде через JSON открывает до-

ступ к управлению системой как для

профессиональных разработчиков, так и

для бизнес-аналитиков, что способ-

ствует формированию культуры low-

code внутри организации.

Высокая производительность и

надёжность достигаются за счёт исполь-

зования современной экосистемы .NET.

Язык C# и фреймворк ASP.NET Core

обеспечивают типобезопасность, высо-

кую скорость выполнения и встроенную

поддержку асинхронных операций, что

критически важно при работе с большим

объёмом параллельных задач. Интегра-

ция с Entity Framework Core и реляцион-

ными базами данных, такими как

PostgreSQL или SQL Server, гарантирует

сохранность состояния процессов даже в

случае сбоев. Механизмы persistence и

recovery, встроенные в сам движок Elsa,

позволяют возобновлять выполнение

процессов после перезапуска сервера,

обеспечивая непрерывность работы си-

стемы.

Отмеченные выше преимущества

способствуют тому, что решение

Пинаев А. А., Томакова Р. А., Реутов Д. К. и др. Проектирование ядра информационной системы … 31

Proceedings of the Southwest State University. Series: Control, Computer Engineering,
Information Science. Medical Instruments Engineering. 2025;15(4):22–34

является пригодным для использования

в условиях, где недопустимы простои и

потеря данных.

Особое внимание уделено безопас-

ности и контролю доступа. Система ис-

пользует современные подходы к аутен-

тификации и авторизации, включая

JWT-токены и ролевую модель (RBAC),

что позволяет гибко управлять правами

пользователей. Каждый сотрудник полу-

чает доступ только к тем задачам и дан-

ным, которые соответствуют его долж-

ности и зоне ответственности. Все дей-

ствия в системе детально логируются,

что обеспечивает прозрачность исполне-

ния и возможность проведения аудита.

Эта функциональность особенно пред-

почтительна для предприятий, работаю-

щих в регулируемых сферах, где требу-

ется документирование всех этапов

управления процессами.

С точки зрения экономической эф-

фективности предлагаемое решение об-

ладает существенно более низкой стои-

мостью по сравнению с коммерческими

аналогами. Отсутствие лицензионных

отчислений, открытость исходного кода

и минимальные требования к инфра-

структуре позволяют внедрять систему

даже на предприятиях с ограниченным

IT-бюджетом.

Стоит особо отметить, что при этом

качество реализации не уступает зару-

бежным продуктам: модульная архитек-

тура, поддержка микросервисов и веб-

API обеспечивают масштабируемость и

долгосрочную поддержку. Это делает

систему не просто временным реше-

нием, а основой для построения единого

информационного пространства, спо-

собного развиваться вместе с предприя-

тием.

Не менее важным является соответ-

ствие политике импортозамещения ПО,

проводимой правительством нашей

страны. В текущих условиях стремление

к технологической независимости ста-

новится одним из приоритетов государ-

ственной политики и корпоративных

стратегий. Использование open-source

проекта на базе .NET, который может

быть свободно модифицирован, адапти-

рован и развиваться силами внутренней

команды, полностью соответствует

этому направлению. Это освобождает

предприятие от зависимости от ино-

странных поставщиков ПО, снижает

риски, связанные с санкционными огра-

ничениями, и повышает уровень кон-

троля над собственной IT-инфраструк-

турой.

Наконец, система демонстрирует

высокий потенциал для дальнейшего

развития и интеграции. Через механизм

HTTP-активностей и брокеры сообще-

ний она легко взаимодействует с ERP,

CRM, IoT-устройствами и другими кор-

поративными системами. Это позволяет

использовать workflow-движок не как

изолированное приложение, а как цен-

тральную шину интеграции, координи-

рующую работу различных компонен-

тов. В перспективе возможна интеграция

с системами искусственного интеллекта

для прогнозирования сроков выполнения

задач, выявления узких мест и автомати-

ческой оптимизации процессов.

Таким образом, преимущества пред-

лагаемого решения выходят за рамки чи-

сто технических характеристик. Они

охватывают экономические, организа-

ционные и стратегические аспекты, де-

лая систему не просто инструментом ав-

томатизации, а полноценным элементом

цифровой трансформации предприятия.

32 Информационные и интеллектуальные системы / Information and Intelligent Systems

Известия Юго-Западного государственного университета. Серия: Управление,
вычислительная техника, информатика. Медицинское приборостроение. 2025;15(4):22–34

Она сочетает в себе мощь современных

технологий, открытость и доступность,

ориентирована на потребности россий-

ских предприятий и предлагает реали-

стичный путь к созданию гибкой, про-

зрачной и эффективной информацион-

ной системы будущего.

Выводы

Использование open-source workflow-

движка Elsa Workflows на платформе

.NET представляет собой эффективный

подход к построению ядра информаци-

онной системы для автоматизации биз-

нес-процессов. Предложенная архитек-

тура сочетает гибкость, высокую произ-

водительность и низкий порог входа, что

делает её особенно привлекательной для

малых и средних предприятий. В

отличие от коммерческих аналогов ре-

шение не требует значительных финан-

совых затрат и позволяет полностью

контролировать исходный код, что соот-

ветствует задачам импортозамещения.

Система обеспечивает надёжное вы-

полнение процессов, поддержку как

code-first, так и low-code сценариев, а

также интеграцию с внешними систе-

мами и средствами мониторинга. Меха-

низмы обработки ошибок, аудита и по-

стобработки данных создают основу для

прозрачности, аналитики и устойчиво-

сти системы.

Дальнейшие шаги включают прак-

тическую реализацию прототипа, его те-

стирование в реальных условиях и

оценку влияния на операционную эф-

фективность предприятия.

Список литературы

1. Сильвер Б. BPMN – Метод и стиль. 2-е изд. М.: Zerde Publishing, 2025. 279 c.

2. Отькало И. Автоматизация бизнес-процессов. М.: Литрес, 2024. 480 c.

3. Матусевич А. Свод знаний по управлению бизнес-процессами: BPM CBOK 4.0.

М.: Альпина Паблишер, 2019. 602 c.

4. Expressions in C# (Elsa Workflows Docs). URL: https://docs.elsaworkflows.io/ ex-

pressions/c (дата обращения: 05.09.2025).

5. Introducing Elsa Workflows 3: A Modern .NET Workflow Engine. URL:

https://cantinhode.net/blogs/community-cantinho-de-net/introducing-elsa-workflows-3-a-

modern-net-workflow-engine (дата обращения: 05.09.2025).

6. Ньюмен С. Создание микросервисов. М.: Питер, 2025. 624 c.

7. Друри К. Управленческий и производственный учет. М.: Юнити-Дана, 2022.

1424 с.

8. Казинцев А. Технология развития производственной системы. М.: Альпина PRO,

2023. 725 с.

9. Тирни Б., Келлехер Д. Наука о данных. Базовый курс. М.: Альпина Паблишер,

2018. 223 с.

10. Водянкин А. Б. Эффективное управление производственным предприятием.

Практическое руководство. М.: Aegitas, 2022. 792 с.

11. Ильин, В. В. Внедрение ERP-систем: управление экономической эффективно-

стью. М.: Интермедиатор, 2016. 296 с.

12. Картер Д. Обработка больших данных. М.: Литресс 2024. 340 с.

https://docs.elsaworkflows.io/%20expressions/c
https://docs.elsaworkflows.io/%20expressions/c
https://cantinhode.net/blogs/%20community-cantinho-de-net/introducing-elsa-workflows-3-a-modern-net-workflow-engine
https://cantinhode.net/blogs/%20community-cantinho-de-net/introducing-elsa-workflows-3-a-modern-net-workflow-engine

Пинаев А. А., Томакова Р. А., Реутов Д. К., и др. Проектирование ядра информационной системы … 33

Proceedings of the Southwest State University. Series: Control, Computer Engineering,
Information Science. Medical Instruments Engineering. 2025;15(4):22–34

13. Парминдер, Сингх, Кочер Микросервисы и контейнеры Docker. М.: Литрес,

2018. 242 с.

14. Моуэт Э. Использование Docker. М.: ДМК Пресс, 2016. 356 с.

15. Дронов В. React 17. Разработка веб-приложений на JavaScript. М.: БХВ-

Петербург, 2022. 384 с.

16. Троелсен Э., Джепикс Ф. Язык программирования C# 7 и платформы .NET и

.NET Core. М.: Диалектика-Вильямс, 2019. 1330 с.

17. Арораа Г., Чилберто Д. Паттерны проектирования для C# и платформы .NET

Core. М.: Питер (Айлиб), 2021. 352 с.

18. Бэнкс А. React: современные шаблоны для разработки приложений. М.: Питер,

2020. 349 с.

19. Шёниг Г.-Ю. PostgreSQL 11. Мастерство разработки. М.: ДМК Пресс, 2019.

354 с.

20. Демиденко А. MongoDB vs PostgreSQL: Битва технологий хранения данных. М.:

Литрес, 2025. 90 с.

References

1. Silver B. BPMN – Method and style. 2nd ed. Moscow: Zerde Publishing; 2025. 279 p.

(In Russ.)

2. Otkalo I. Automation of business processes. Moscow: Litres; 2024. 480 p. (In Russ.)

3. Matusevich A. Body of knowledge on business process management: BPM CBOK 4.0.

Moscow: Alpina Publisher, 2019. 602 p.

4. Expressions in C# (Elsa Workflows Docs). Available at: https://docs.elsawork-

flows.io/expressions/c (accessed 05.09.2025).

5. Introducing Elsa Workflows 3: A Modern .NET Workflow Engine. URL:

https://cantinhode.net/blogs/community-cantinho-de-net/introducing-elsa-workflows-3-a-

modern-net-workflow-engine (accessed 05.09.2025).

6. Newman S. Creation of microservices. Moscow: Piter, 2025. 624 p.

7. Drury K. Managerial and production accounting. Moscow: Unity-Dana; 2022. 1424 p.

(In Russ.)

8. Kazintsev A. Technology of production system development. Moscow: Alpina PRO;

2023. 725 p.

9. Tierney B., Kelleher D. Data Science. Basic course. Moscow: Alpina Publisher; 2018.

223 p. (In Russ.)

10. Vodyankin A.B. Effective management of a manufacturing enterprise. Practical guide.

Moscow: Aegitas; 2022. 792 p. (In Russ.)

11. Ilyin V.V. Implementation of ERP systems: economic efficiency management. Mos-

cow: Intermediator; 2016. 296 p. (In Russ.)

12. Carter D. Big data processing. Moscow: Litress; 2024. 340 p. (In Russ.)

13. Parminder, Singh, Kocher Microservices and Docker containers. Moscow: Litres;

2018. 242 p. (In Russ.)

14. Mowat E. Using Docker. Moscow: DMK Press; 2016. 356 p. (In Russ.)

34 Информационные и интеллектуальные системы / Information and Intelligent Systems

Известия Юго-Западного государственного университета. Серия: Управление,
вычислительная техника, информатика. Медицинское приборостроение. 2025;15(4):22–34

15. Dronov V. React 17. Development of web applications in JavaScript. Moscow: BHV-

Petersburg; 2022. 384 p. (In Russ.)

16. Troelsen E., Jepix F. The C#7 programming language and platforms .NET and .NET

Core. Moscow: Dialectics-Williams; 2019. 1330 p. (In Russ.)

17. Aroraa G., Chilberto D. Design patterns for C# and the platform.NET Core. Moscow:

Piter (Aylib); 2021. 352 p. (In Russ.)

18. Banks A. React: modern templates for application development. Moscow: Piter; 2020.

349 p. (In Russ.)

19. Schoenig G.-Y. PostgreSQL 11. Mastery of development. Moscow: DMK Press;

2019. 354 p. (In Russ.)

20. Demidenko A. MongoDB vs PostgreSQL: The Battle of data storage technologies.

Moscow: Litres; 2025. 90 p. (In Russ.)

Информация об авторах / Information about the Authors

Пинаев Александр Алексеевич,

студент кафедры программной инженерии,

Юго-Западный государственный университет,

г. Курск, Российская Федерация,

e-mail: a59-info@yandex.ru

Aleksandr A. Pinaev, Student at the Department

of Software Engineering, Southwest State

University, Kursk, Russian Federation,

e-mail: a59-info@yandex.ru

Томакова Римма Александровна, доктор

технических наук, профессор кафедры

программной инженерии, Юго-Западный

государственный университет,

г. Курск, Российская Федерация,

e-mail: rtomakova@mail.ru,

Researcher ID: O-6164-2015,

ORCID: 0000-0003-0152-4714

Rimma A. Tomakova, Doctor of Sciences

(Engineering), Professor at the Department

of Software Engineering, Southwest State

University, Kursk, Russian Federation,

e-mail: rtomakova@mail.ru,

Researcher ID: O-6164-2015,

ORCID: 0000-0003-0152-4714

Реутов Дмитрий Константинович,

преподаватель кафедры программной

инженерии, Юго-Западный государственный

университет, г. Курск, Российская Федерация,

e-mail: sdfh.sgh@inbox.ru,

ORCID: 0009-0007-6969-2286

Dmitry K. Reutov, Lecturer at the Department

of Software Engineering, Southwest State

University, Kursk, Russian Federation,

e-mail: sdfh.sgh@inbox.ru,

ORCID: 0009-0007-6969-2286

Фомин Дмитрий Александрович,

аспирант кафедры программной инженерии,

Юго-Западный государственный университет,

г. Курск, Российская Федерация,

e-mail: dimarro100@gmail.com,

ORCID: 0009-0004-5254-5608

Dmitry A. Fomin, Postgraduate

at the Department of Software Engineering,

Southwest State University,

Kursk, Russian Federation,

e-mail: dimarro100@gmail.com,

ORCID: 0009-0004-5254-5608

mailto:a59-info@yandex.ru
mailto:a59-info@yandex.ru
mailto:rtomakova@mail.ru
mailto:rtomakova@mail.ru
mailto:sdfh.sgh@inbox.ru
mailto:sdfh.sgh@inbox.ru

