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Abstract

The purpose of research. The purpose of this scientific work is to conduct a comprehensive theoretical and analytical
review of modern machine learning algorithms used to solve the problems of dynamic route planning for mobile robots.
The main focus is on a comparative assessment of the effectiveness of various learning paradigms — reinforcement
learning, teacher-based learning, and hybrid approaches — in a changing and uncertain environment where rapid ad-
aptation, learnability, and algorithm stability are important.

Methods. The study is based on an analysis of more than 40 peer-reviewed scientific publications selected from leading
international academic databases for the period from 2020 to 2024. A structured methodology was used, including
descriptive, comparative, and analytical approaches. The main evaluation criteria were: convergence rate; computa-
tional efficiency; generalization ability; noise tolerance; adaptability to real-time and stable behavior in changing condi-
tions.

Results. It is shown that tabular algorithms provide basic navigation functionality, but they do not scale for complex
tasks. Deep models have a high degree of adaptability and efficiency. Teaching with a teacher demonstrates accuracy
in the presence of expert data, but is vulnerable to the accumulation of errors. Hybrid architectures combining graph
neural networks and symbolic modeling achieve the best interpretability and stability in an unstable environment.
Conclusion. The results obtained form a reliable theoretical basis for the selection and application of autonomous
navigation algorithms. The comparative analysis highlights the value of flexible, scalable, and explicable models in
intelligent robotics systems of a new generation.

Keywords: dynamic path planning; machine learning; behavioral cloning; deep Q-networks; proximal policy optimiza-
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Pesome

Uenb uccnedoeaHusi. Llenbio Hacmosiwel HaydyHol pabomsi sisrisemcsi npoeedeHue KOMIIEKCHO20 meopemuye-
CKO20 U aHanumu4eckoeo 0630pa Co8PeMEHHbIX aneopummo8 MalluHHO20 0ByYeHUs], MPUMEHSIEMbIX Oisi peleHUs
3a0ay QuHaMU4eCcKo20 rniaHuposaHusi Mapwpymos MobusibHbix pobomos. OCHOBHOE 8HUMaHUE yOernsemcsi cpagHuU-
merbHOU ouyeHKe 3ghghekmusHOCMU pa3nuyHbixX napaduem obydYeHusi: 0by4yeHuUst ¢ NoOKperneHueMm, 0by4yeHus ¢ y4u-
mernem u 2ubpudHbix MoOxX0008 — 8 ycriosusix uaMeHsirowelcsi U HeoripedenéHHol cpeldbl, 20e saxxHa onepamugHasi
adanmauyusi, 0byyaemMocms U ycmolyueocms afzopumma.

MemoOdsl. ViccriedosaHue ocHogaHO Ha aHanuse 6ornee 40 peueH3upyeMbix HayYHbIX Mybnukayull, omobpaHHbIX U3
8edyuux MmexdyHapoOHbIx akademudeckux 6a3 OaHHbIx 3a nepuod ¢ 2020 no 2024 zz. [NpumeHsinacs CmpyKkmypupo-
8aHHasi Memodorioaus, 8KIMYawas onucameribHble, cpasHUMenbHble U aHanumuyeckue nooxodsl. B kayecmee
OCHOBHbIX KpUumepuees OUEHKU UCMO0Ib308asIUCk; CKOPOCMb CXO0UMOCMU; 8blHUCTUMEbHasH 3¢hgheKmMuUEHOCMb; Crio-
cobHoCcmMb K 0606WEHUI0; ycmoliyugocms K WyMy; adanmueHOCMb K peasibHOMY 8peMeHU U cmabunisHocms nosede-
HUST 8 USMEHSIOUUXCST YCIIOBUSIX.

Pesynbmamsi. [TokazaHo, ymo mabnuyHbie anzopummsl obecrieqyusarom 6a308yt0 HaBU2aUUOHHYO (hyHKUUOHaIb-
HOCmb, HO He Macwmabupyromcs Onsi CroXHbIX 3aday. [nybuHHble Modenu obnadarom 8bicOKOU cmerneHbio adarl-
musHocmu u aghgpekmusHocmu. O6ydeHue ¢ ydumenem 0eMOHCMPUPYem MOYHOCMb NPU HanuYuU 3KCcrnepmHbiX 0aH-
HbIX, HO ySI38UMO K HaKorM/eHUr owubok. [ubpudHbie apxumeKkmypbl, codemarowjue epagoebie Hellpocemu u CUM-
gosiudeckoe mModenuposaHue, docmuearom Hauslydwux rnokasamesel uHmeprnpemupyemMocmu u ycmou4ueocmu 8
ycrosusix HecmaburbHol cpeobi.

3aknroyerue. NonyyeHHbie pe3ynbmamb! hopMupyom HadEXHy meopemuyeckyro ocHogy Orisi 8bibopa U npume-
HEeHUSsI ar2opummoe asmoHOMHOU Hasuzayuu. CpagHumersnbHbIl aHau3 nod4épkugaem yeHHoCmb 2ubKuX, Macuwma-
bupyembix U 06BSCHUMBIX MOOesiel 8 UHMeIeKkmyarbHbIX PO60MOMEeXHUYECKUX cUCmeMax Ho8020 MOKOIEHUS.

Knroyeenble cnoea: duHamuyeckoe nnaHupoeaHue rnymu, MmawuHHoe o6yquue; rogedeH4YeckKoe KITOHUpoBaHue, any60-
Kue Q-cemu; npoKcumMaribHas ornmumu3ayusi noaumuKu; MobusibHbeie pobombl; a8mMoOHOMHas Haguaauusi.

KoHdbniukm unmepecoeg: Aemopbi OeKkiapupyom omcymcemeue siI8HbIX U MOMeHUUasibHbIX KOHQIUKMO8 UHmepe-
COB, CBSI3a@HHbIX C NyGnMKauMen HacTosILLEN CTaTbMy.
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Introduction

Dynamic path planning refers to the
autonomous computation of collision-free
trajectories in environments that change
over time. This class of algorithms plays a
pivotal role in enabling robots to react in
real time to environmental dynamics, en-
suring safe and continuous operation in
complex scenarios [1]. Unlike static plan-
ning, which assumes a fixed map and im-
mutable surroundings, dynamic path plan-
ning is built to handle uncertainty and the
constant movement of objects, humans, or
terrain features. One of the recent techno-
logical advances in this area involves the
hybridization of the Sparrow Search Algo-
rithm with the Dynamic Window Ap-
proach. This combination has demon-
strated significant improvements in path
efficiency and obstacle avoidance across
variable-speed environments, as shown in
trajectory simulations with dynamic obsta-
cle fields [2]. At the same time, adaptive
dynamic programming has been used to re-
formulate path planning as a continuous-
time optimal control problem, allowing ro-
bots to adjust to rapid changes in their local
context, especially in narrow indoor corri-
dors and crowded environments [1].

The application of deep reinforcement
learning, particularly the Soft Actor-Critic
(SAC) model, has further strengthened dy-
namic decision-making in robotics. SAC

lModnucaHa e nedams 15.08.2025

Ony6nukosaHa 30.09.2025

achieves stable trajectory convergence even
in cluttered and continuously shifting envi-
ronments, as evidenced in IFAC benchmark
trials using multiple mobile platforms [3].
In parallel, a growing body of analytical re-
views has highlighted the transition from
deterministic search algorithms to learning-
based systems capable of real-time replan-
ning, reflecting the evolving demands of
mobile autonomy in dynamic environments
[4]. Mobile robots operating in shared in-
door spaces or urban outdoor settings must
often combine path planning with real-time
tracking. Dynamic programming ap-
proaches used in such cases offer low-la-
tency updates to control signals, even when
robots face discontinuous obstacle move-
ment and occlusion [5]. These methods are
also actively adapted for planetary rovers
and field robots, where environmental vari-
ability can occur due to weather, terrain
shift, or autonomous system degradation.
An extensive review of classical and mod-
ern path planning strategies has outlined the
progression from grid-based techniques to
biologically inspired metaheuristics and
Al-integrated models. This trajectory of de-
velopment marks a shift from local safety to
global optimization, integrating spatial pre-
diction and adaptive feedback [6]. Like-
wise, the use of path planning in advanced
autonomous systems increasingly requires
the fusion of sensory data with predictive
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models, as demonstrated by robot platforms
tested with LIDAR and stereo vision under
dynamic constraints [7].

Experimental work has also focused on
the integration of Ant Colony Optimization
(ACO) with reactive models such as DWA.
The hybrid ACO-DWA algorithm, tested in
both simulated and physical environments,
achieves path smoothness and high success
rates in obstacle-dense fields, especially in
disaster recovery simulations [8]. Mean-
while, Simulated Annealing (SA) has been
refined to improve its convergence speed
and global search capacity, with modern
versions reducing path complexity by up to
27% in stochastic environments [9]. Fi-
nally, heuristic optimization continues to
evolve. Real-time path planning based on
hybrid algorithms now supports rapid recal-
culation cycles — down to tens of millisec-
onds — by integrating motion prediction and
adaptive cost maps. These methods are par-
ticularly useful for swarm robotics and de-
centralized navigation tasks [10].

The incorporation of machine learning
(ML) into dynamic path planning has pro-
foundly reshaped mobile robot navigation.
Unlike traditional rule-based algorithms,
ML techniques — particularly reinforcement
learning (RL) — have enabled robots to learn
optimal paths in real-time by interacting
with dynamic environments [11]. This shift
is not merely technical; it represents a con-
ceptual leap in how autonomy is defined in
robotic systems. As research has shown,
Deep Q-Networks (DQN) outperform clas-
sical algorithms such as A* and Dijkstra in
both computational speed and adaptability
to moving obstacles [12]. This superiority
is especially evident in non-deterministic

settings, where static methods struggle. In
more complex simulations, policy gradient
methods have demonstrated increased
training stability compared to traditional Q-
learning, especially in high-dimensional
environments like Gazebo [13]. To address
the complexity of real-world input, hybrid
models combining CNNs, LSTMs, and re-
inforcement learning have emerged. These
models integrate spatial and temporal data
for more nuanced obstacle avoidance and
trajectory prediction [14]. Experience Re-
play, used in DDPG, further refines learn-
ing by storing prior interactions, accelerat-
ing convergence and improving path effi-
ciency [15]. Notably, CNNs facilitate real-
time obstacle recognition using visual input
streams, making perception faster and more
accurate [16]. However, simulation-to-real-
ity transfer remains problematic — over 40%
of models successful in simulation fail in
physical trials due to noise and unseen var-
lables [17]. Despite this, ML approaches
continue to offer exceptional advantages in
adaptability and generalization across envi-
ronments [18], particularly with the use of
Graph Neural Networks for encoding dy-
namic topologies [19].

The past three years have seen an un-
precedented surge in RL and DL applications
in robotic navigation. A 28% increase in re-
lated publications between 2021 and 2023
highlights this growing interest [11]. Yet, de-
spite the volume of research, comparative
studies remain scarce. Most publications fo-
cus on isolated models without cross-evalua-
tion, limiting broader applicability [12]. Ex-
perimental setups often vary widely, mak-
ing it difficult to assess algorithms under
unified benchmarks [13]. Some prioritize

Proceedings of the Southwest State University. Series: Control, Computer Engineering,
Information Science. Medical Instruments Engineering. 2025;15(3):66—78



70 MexaTtpoHuka, poboToTexHuka / Mechatronics, Robotics

time-to-goal, others measure collision rates
or energy use, creating inconsistencies in
reported outcomes [14]. Real-world tests,
like those conducted with TurtleBot3 in Ga-
zebo environments, confirm RL models
reach targets up to 35% faster with fewer
collisions than classical planners [15].
However, such results lack standardization
across platforms. Moreover, key scientific
reviews point out that current literature is
fragmented, with little effort to synthesize
experimental results into a cohesive frame-
work [16; 17; 18; 19]. This fragmentation
underscores the urgent need for theoretical
consolidation to guide practical implemen-
tation.

The primary aim of this article is to
conduct an in-depth theoretical and analyt-
ical review of contemporary machine
learning algorithms applied to dynamic
path planning in mobile robotics. The
study systematically examines scientific
models, compares algorithmic efficiency,
and synthesizes results from over 40 peer-
reviewed sources to identify patterns, lim-
itations, and advancements across rein-
forcement, supervised, and hybrid learning
approaches.

Materials and methods

This study is grounded in the compre-
hensive analysis of more than 40 peer-re-
viewed scientific sources published be-
tween 2020 and 2024. The literature was
drawn from globally recognized academic
databases such as Scopus, Web of Science,
IEEE Xplore, Springer, and ScienceDirect.
Selection criteria included direct relevance
to machine learning-based dynamic path
planning, verified methodological rigor,

and the presence of empirical performance
data or experimental results.

The research employs a structured an-
alytical framework to review and synthe-
size findings from published studies on ma-
chine learning algorithms in robotic naviga-
tion. A combination of descriptive, compar-
ative, and analytical methods was applied to
dissect algorithmic design principles, as-
sess performance metrics like adaptability
and computational cost, and map scientific
contributions across reinforcement, super-
vised, and hybrid learning models. Each
study was evaluated within its methodolog-
ical context to ensure consistency and depth
of interpretation.

Results and their discussion

Reinforcement Learning-Based
Approaches in Dynamic Path Planning

Reinforcement learning began with
tabular methods like Q-Learning and
SARSA, which remain relevant in struc-
tured environments with limited state com-
plexity. Q-Learning operates off-policy,
updating its state-action values based on the
best possible action, not necessarily the one
taken. This allows it to converge faster in
deterministic settings, where complete ob-
servability is present [20]. SARSA, how-
ever, updates its estimates based on the ac-
tual policy the agent follows, making it
more resilient to noise and uncertainty dur-
ing exploration [21]. In semi-structured en-
vironments, where state transitions are sto-
chastic or partially observable, SARSA
tends to produce smoother and more cau-
tious trajectories. Yet, it does so at the cost
of slower convergence when compared to
Q-Learning. Both algorithms become
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impractical when the number of states and
actions grows, due to the exponential in-
crease in memory and computation — a

problem known as the curse of dimension-
ality. These foundational differences and
constraints are synthesized in Table 1.

Table 1. Comparative Analysis of Q-Learning and SARSA

Parameter Q-Learning SARSA
Learning Type Off-policy On-policy
Exploration . e
.p. ) Less sensitive More sensitive
Sensitivity
Convergence Faster in deterministic Slower but more stable in
Speed environments stochastic cases
Safety in Risky Can be unsafe due to over- Safer; follows current
Domains estimation policy
- May diverge with im- More stable under same
Stability . .
proper exploration conditions
. Suitable for known/struc- Better for noisy/semi-struc-
Usage Domain . .
tured environments tured environments
- Limited in large state Also limited; suffers from
Scalability .
spaces same constraint
To address scalability limitations, pipeline — from visual input to discrete ac-

Deep Q-Learning Networks (DQNSs) were
introduced. These models use deep convo-
lutional architectures to approximate Q-val-
ues from high-dimensional inputs, such as
raw pixels or LIDAR scans [22]. In naviga-
tion tasks involving dynamic obstacles,
DQN significantly outperformed classical
A* planners, achieving a 24% reduction in
collision rate. Still, DQN suffers from over-
estimation of action values. Double DQN
(DDQN) corrects this by decoupling action
selection from evaluation, which improves
both convergence and stability in training
[23]. Dueling DQN further advances the ar-
chitecture by separately modeling state-
value and advantage functions, helping the
agent better evaluate which states matter,
even when actions seem irrelevant [24].
The structure of the deep Q-network

tion selection — is illustrated in Figure 1.
Policy optimization approaches offer a
robust alternative to value-based methods,
especially in environments with continuous
action spaces. Proximal Policy Optimization
(PPO) is among the most widely adopted
due to its clipped objective, which ensures
smoother updates and greater training sta-
bility [25]. PPO has been successfully de-
ployed in real robots like TurtleBot3, reduc-
ing task completion times by up to 40%
compared to DQN. A3C (Asynchronous Ad-
vantage Actor-Critic) acelerates learning
through parallel training threads, with
agents operating asynchronously to explore
different trajectories. This design not only
increases sample efficiency but also helps
avoid convergence to suboptimal local min-
ima [26]. In dynamic environments with
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moving goals and obstacles, A3C demon-
strated 35% faster convergence than DQN.
It is particularly suited for multi-agent sys-
tems and environments with frequent
change, where learning speed and policy
generalization are critical. TRPO (Trust Re-
gion Policy Optimization) builds on these
concepts by strictly bounding policy up-
dates  within  trust regions. This

Convolution Convolution
- -

I m
Ooooo0a OO0DE00 _[ORR0O00 0000008 §OB00000

mathematical safeguard enhances training
stability, especially in long-horizon navi-
gation tasks that demand consistent be-
havior over extended episodes. Compared
to PPO and A3C, TRPO maintains
stronger guarantees for monotonic policy
improvement, making it a preferred
choice in safety-critical scenarios [26].
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Fig. 1. Architecture of a Deep Q-Network (DQN)

Supervised and Imitation Learning
Approaches

Behavioral Cloning (BC) remains one
of the most widely used supervised learn-
ing strategies in robotic navigation. In BC,
the model passively learns a mapping be-
tween observations and actions by mim-
icking an expert’s trajectory, collected
from human-operated or algorithmically
optimal control systems [27]. These
demonstrations, usually obtained from
simulators like CARLA or real-world

robots, provide sequential data aligned
with expert decision-making processes
[28]. Despite its simplicity, BC is prone to
error accumulation: small deviations in
early predictions can cascade into major
trajectory failures over time. This phenom-
enon becomes especially critical in ex-
tended episodes, where uncorrected deci-
sions amplify over the planning horizon
[29]. To mitigate this, techniques like
DAgger have been introduced — these iter-
atively allow expert corrections to be
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integrated into the training dataset, reduc-
ing the divergence from desired behavior
[30]. The method’s generalization capabil-
ity is inherently limited by the diversity
and coverage of expert trajectories. In safe
yet structured environments, such as ware-
house logistics or traffic lanes, BC models
exhibit high short-term accuracy — up to

92% in certain benchmark tests [30]. How-
ever, their adaptability to new conditions
remains constrained unless supplemented
with additional learning strategies, such as
reinforcement-based fine-tuning [30]. A
comparative overview of BC and broader
expert imitation frameworks is presented
in Table 2.

Table 2. Comparative Analysis of Behavioral Cloning and Expert Demonstration Learning

Aspect Behavioral Cloning (BC)

Expert Demonstration Learning

Learning Type

Supervised learning

Supervised or semi-supervised

Input Data .
actions

Labeled trajectories of expert

Real-time or pre-recorded expert
demonstrations

Error Accumulation .
horizons)

High (compounding over long

Moderate (depending on correction
strategies)

Adaptability

Low in unseen environments

Moderate if integrated with online
feedback

Training Safety

Safe (no trial-and-error required)

Safe if offline; risk increases with
real-time feedback models

Required
Demonstrations

High (100 + for complex tasks)

Moderate (50-100)

Real-World Use

Autonomous driving, warehouse
Cases navigation

Surgical robotics, service robots

Weaknesses

Overfitting, no correction of out- | Limited generalization if expert data
of-distribution errors

IS sparse

Sequential decision-making in dy-
namic or partially observable environments
necessitates models that can retain and pro-
cess historical context. Long Short-Term
Memory (LSTM) networks, due to their
gated memory architecture, excel in such
tasks by preserving long-range temporal de-
pendencies between observations and deci-
sions [31]. In contrast, Gated Recurrent
Units (GRUSs) provide computational effi-
ciency, often vyielding similar accuracy
while reducing training time by 10-15% in
practical navigation systems [32]. RNN-

based architectures are particularly effec-
tive in applications where real-time sensor
data may be delayed or partially corrupted.
Their ability to model temporal context al-
lows agents to predict and compensate for
unseen obstacles or state transitions. This is
especially critical in autonomous indoor
navigation, aerial robotics, and hospital de-
livery systems [33]. Beyond standard
RNNs, sequence-to-sequence (seq2seq)
models expand the predictive horizon by
generating full sequences of actions based
on prior observations, rather than single-
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step predictions. In navigation experiments
involving dynamic objects and occlusion,
seg2seq models reduced trajectory devia-
tion by approximately 30% compared to
basic LSTM predictors [33]. These archi-
tectures become even more powerful when
integrated with attention mechanisms,

SST sequence

Hidden Layer

Xiines

Input Layer

Hidden Layer Dense

which enable the network to focus selec-
tively on critical moments in the input se-
guence — greatly improving interpretability
and precision [34]. A visual breakdown of
how LSTM and GRU architectures process
temporal input for navigation purposes is
shown in Figure 2.

Dense Output
Layer Layer

Fig. 2. Architecture of LSTM and GRU Models for Path Prediction Tasks

Hybrid and Graph-Based Learning
Architectures

Graph Neural Networks (GNNSs) pro-
vide a computationally efficient and topo-
logically expressive framework for dy-
namic path planning. Their ability to en-
code spatial and relational information
across both local neighborhoods and global
structures makes them particularly effective
in unpredictable and evolving environ-
ments [35]. In Dyngmp, a GNN-based mo-
tion planner tested under shifting obstacle
scenarios, agents achieved up to 28% im-
provement in path continuity compared to
baseline DNN models [35]. Beyond static
geometry, modern GNN frameworks

incorporate spatio-temporal dependencies
to handle changing maps. By continuously
updating node embeddings based on neigh-
bor states and temporal sequences, these
networks enable mobile agents to react
adaptively to obstacle movements or shift-
ing targets [36]. In transportation robotics,
such architectures have been successfully
applied to urban grid layouts, encoding in-
tersections and street segments as intercon-
nected graph nodes with real-time traffic
conditions as edge weights [36]. Stochastic
occupancy grid prediction also benefits
from graph-based formulations. GNNs ena-
ble probabilistic inference over partially ob-
servable environments by propagating
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information iteratively across a spatial map
graph, thus allowing the agent to maintain a
stable path despite environmental uncer-
tainty [37]. This approach significantly re-
duces the computational load, especially in
embedded systems where real-time con-
straints are critical [37].

Hybrid models that merge neural learn-
ing with symbolic reasoning are becoming
essential in contexts where explainability
and constraint satisfaction matter. For ex-
ample, symbolic abstraction techniques
such as reachability analysis can guide hi-
erarchical reinforcement learning, segment-
ing the environment into interpretable sym-
bolic goals [38]. A robot trained in this
manner does not merely optimize naviga-
tion but understands transitions between se-
mantically meaningful states like "exit
room" or "avoid hazard" [38]. The value of
hybridization becomes most apparent in
real-time semantic navigation. In recent ex-
periments using vision-based neuro-sym-
bolic pipelines, agents were able to parse
visual data, interpret semantic labels, and
align actions with symbolic goals, even un-
der changing indoor layouts [39]. These
systems integrated CNN perception mod-
ules with symbolic planners in a feedback
loop that enabled both correction and gen-
eralization of behavior [39]. Importantly,
this dual-channel architecture — where neu-
ral models propose and symbolic systems
validate — supports task reliability in uncer-
tain domains. It ensures that emergent be-
haviors remain within operational con-
straints and goal semantics, which is

especially crucial in applications involving
human interaction, such as eldercare or col-
laborative manufacturing.

Conclusions

This article presents a detailed analyti-
cal synthesis of machine learning algo-
rithms used in dynamic path planning for
mobile robots. Through the structured ex-
amination of over 40 peer-reviewed scien-
tific works, the study identifies the evolu-
tion and differentiation of learning para-
digms — reinforcement learning, supervised
models, and hybrid frameworks. Q-Learn-
ing and SARSA offer foundational insights
into value-based strategies, whereas their
deep learning extensions (DQN, DDQN,
Dueling DQN) enhance scalability and ro-
bustness in high-dimensional state spaces.
Policy optimization models such as PPO,
A3C, and TRPO demonstrate superior
adaptability in continuous action domains
and dynamic environments. Supervised
techniques, particularly Behavioral Cloning
and seq2seq models, underscore the value
of expert demonstrations, though they re-
main vulnerable to compounding errors.
Meanwhile, recurrent architectures like
LSTM and GRU handle partial observabil-
ity with temporal memory capabilities. The
emergence of Graph Neural Networks and
neuro-symbolic systems introduces a new
layer of abstraction and interpretability, es-
sential for real-world deployment under un-
certainty. These findings form a theoretical
framework that aligns algorithmic selection
with task-specific constraints in modern ro-
botic navigation.
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