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Резюме 

Цель исследования – развитие методов синтеза мультимодальных классификаторов для оценки риска 
кардиореспираторных заболеваний с учетом коморбидности.  

Методы. Разработан метод синтеза классификатора риска внебольничной пневмонии с учетом коморбид-
ности. Метод отличается вводом дополнительного фактора риска, представленного двухконтурной не-
линейной моделью реальных факторов риска, с последующим синтезом слабых классификаторов на ее ос-
нове. Метод позволяет построить мультимодальный классификатор риска внебольничной пневмонии, ко-
торый учитывает взаимное влияние коморбидных заболеваний на суммарный риск. Для построения слабых 

классификаторов предложено использовать полносвязную нейронную сеть Хопфилда, отличающуюся мно-
госвязной структурой и двумя задержками на один такт, управляемыми парафазным генератором (с про-
тивофазными выходами), обеспечивающими запись в регистры задержек рисков с выходов нейронной сети 
Хопфилда со сдвигами на один такт. Для обучения слабых классификаторов с нейронной сетью Хопфилда 
разработан алгоритм, позволяющий обеспечить заданные показатели точности классификации и задан-
ные показатели устойчивости нейронной сети. 
Результаты. В ходе экспериментальных исследований мультимодального классификатора риска внеболь-
ничной пневмонии с четырьмя сегментами факторов риска было установлено, что при использовании всех 
сегментов факторов риска все используемые показатели качества классификации риска внебольничной 
пневмонии превышают величину 0,8 по всем группам наблюдения. Показатели качества классификации 
риска артериальной гипертензии как сопутствующего заболевания превышают показатели качества 
шкалы SCORE в одних и тех же контрольных группах в среднем на 11%. 
Заключение. Использование метода синтеза слабого классификатора медицинского риска с учетом комор-
бидности в мультимодальном классификаторе риска кардиореспираторных заболеваний открывает новые 
возможности для доступной и объективной диагностики заболеваний системы дыхания и сердечно-сосуди-
стых заболеваний, расширяя возможности интеллектуальных систем поддержки принятия клинических ре-
шений как при терапии, так и при реабилитации.  
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Abstract 

The purpose of the research is to develop a methodology for classifying complexly structured halftone images based 

on a multimodal approach using methods of morphological analysis, spectral analysis and neural network modeling. 

Methods. A method for classifying the contours of the boundaries of segments of a complexly structured image is 

described. The method is based on the fact that in chronic diseases of the pancreas, there is a violation of the integrity 

of the contour of its border and its waviness increases due to retractions and bulges caused by an alterative inflamma-

tory process. The method includes the stages of normalization of ultrasound images and image segmentation with the 

selection of the contour of the object of interest. To classify the contour of a segment boundary, it is proposed to use 

Fourier analysis and neural network technologies. The method is illustrated using the example of classifying the contour 

of the border of the pancreas on its transcutaneous acoustic image. 

Results. Experimental studies of the proposed methods and means for classifying medical risk were carried out on 

diagnostic tasks according to the following classes: "chronic pancreatitis" – "without pathology". For experimental stud-

ies, video sequences of ultrasound images of the pancreas provided by an endoscopist were used. The purpose of the 

experimental studies was to analyze the classification quality indicators of image classifiers with class segments 

"Chronic pancreatitis" and "Without pathology". The training sample of video images (frames of video sequences) in-

cluded 200 examples, one hundred from each class. The quality indicator "Sensitivity" of classification for two classes 

is 85,7%, the indicator "Specificity" is 87,1%. 

Conclusion. The use of the contour analysis method in classifiers of ultrasound images of the pancreas opens up new 

opportunities for accessible and objective diagnosis of pancreatic diseases, expanding the capabilities of intelligent 

clinical decision support systems. 
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Введение 

В современной медицине под комор-
бидностью понимают сосуществование у 
пациента двух или более заболеваний вне 
зависимости от активности каждого из 
них, взаимосвязанных между собой или 
совпадающих по времени у одного паци-
ента [1]. В настоящее время исследовате-
лей стала привлекать роль хронических 
сердечно-сосудистых заболеваний (ССЗ) 
на риск неблагоприятного исхода вне-
больничной пневмонии (ВП). В ряде ис-
следований показано, что имеющаяся 
хроническая сердечно-сосудистая пато-
логия у умерших пациентов с ВП 

встречается в 3 раза чаще, чем у умерших 
пациентов, не имеющих сердечно-сосу-
дистой патологии [2]. Проведенные ис-
следования указывают на существенную 
роль артериальной гипертензии (АГ) на 
увеличение длительности легочной ин-
фильтрации, на развитие осложнений и 
на прогноз исхода ВП. В [3] показано, что 
кумулятивный риск АГ значительно уве-
личивает риск неблагоприятного исхода 

заболевания системы дыхания (СД) и 
наоборот. На рисунке 1 показаны кривые 
кумулятивного риска (КР) наступления 
конечной точки (КТ) у пациентов с АГ в 
зависимости от наличия патологии СД. 

 
Рис. 1. Кривые кумулятивного риска наступления конечной точки у пациентов  
             с артериальной гипертензией в зависимости от наличия хронических  
             заболеваний системы дыхания:  АГ;   АГ+ ВП 

Fig. 1. Curves of the cumulative risk of the end point in patients with arterial hypertension  
            depending on the presence of chronic diseases of the respiratory system: 
             arterial hypertension;  arterial hypertension + community-acquired pneumonia 
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Известно, что факторы риска (ФР) 
кардиореспираторных заболеваний ча-
сто коррелируют друг с другом, а в не-
которых случаях непосредственно вли-
яют друг на друга, что приводит либо к 
усилению, либо к ослаблению частного 
риска по данному ФР [4; 5; 6; 7; 8; 9]. Эф-
фект этого влияния может выражаться 
как в увеличении доли КР, связанного с 
этим ФР, так и ослаблении сочетанного 
ФР на риск ССЗ. Этот эффект может 
наблюдаться как на «сырых» данных, 
т. е. на результатах классификации ме-
дицинского риска (МР) агентами ниж-
него иерархического уровня, так и на бо-
лее высоких иерархических структурах.  

Материалы и методы 

Для оценки влияния риска одного 
заболевания на риск другого заболева-
ния используют два подхода, оба из ко-
торых должны учитывать тот факт, что 
коморбидные заболевания не только 
усиливают взаимные МР, но и имеют 
ряд одинаковых ФР. Поэтому первый 
подход основан на том, что наличие ко-
морбидности приводит к усилению или 
снижению влияния ФР на МР коморбид-
ного заболевания. Такой подход позво-
ляет учитывать синергетический эффект 
на входе классификатора МР [10]. Вто-
рой подход учета влияния коморбидно-
сти на МР предусматривает учет синер-
гии на основе учета выходов слабых 
классификаторов (weak classifiers) МР. 

Рассмотрим подробнее первый под-
ход. Формально синергетический эф-
фект может быть учтен вводом M 

дополнительных (виртуальных) ФР в 
виде некоторых функций (моделей) от 
реальных ФР: f1(X1, X2, … , XN), f2(X1, X2, 

… , XN), …, fm(X1, X2, … , XN), …, fM(X1, 

X2, … , XN). Здесь X1, X2, … , XN – множе-
ство реальных факторов риска количе-
ством N.  В качестве моделей виртуаль-
ных ФР используем частные функции 
влияния Zij и Zji i-го ФР на j-й ФР и 
наоборот, определяемые по следующим 
формулам: 

,

.

ij ii i ij j ij i j

ji ji i jj j ji i j

Z a X a X b X X

Z a X a X b X X

= + +

= + +
     

(1)
 

При использовании формул (1) це-
лесообразно осуществить масштабиро-
вание ФР таким образом, чтобы они 
находились в одном динамическом диа-
пазоне, например, по формуле 

min( )ˆ
max( ) min( )

i i
i

i i

X X
X

X X

−
=

−
.        (2) 

Уравнения (1) позволяют получить 
виртуальные ФР (ВФР) – Zij и Zji. Ис-
пользуя (1), можем построить соответ-
ствующие слабые классификаторы, ко-
торые назовем классификаторами си-
нергетических каналов (СК). При этом в 
качестве операндов в левой части урав-
нений (1) могут рассматриваться ФР, по-
лученные на любом иерархическом 
уровне мультимодального классифика-
тора риска (ММК). При этом Zij и Zji – это 
разные ВФР, т. е.  

 ij jiZ Z .                 (3) 

При учете коморбидности обычно 
рассматриваются только два сочетанных 
заболевания, поэтому на входах 



Петрунина Е. В., Шаталова О. В., Алавcи Хайдер А. Х. и др.               Мультимодальный классификатор риска…   85 

Proceedings of the Southwest State University. Series: Control, Computer Engineering,  
Information Science. Medical Instruments Engineering. 2024; 14(2): 81–105 

синергетических каналов присутствуют 
либо два скаляра, либо два вектора, 
определяющие дополнительный риск в 
результате синергии. Коэффициенты в 
(1) определяются в процессе построения 
моделей СК, которые строятся либо на 
парадигме обучаемых классификаторов, 
либо на основе алгоритмов математиче-
ского моделирования мультипараметри-
ческих данных, например, методе груп-
пового учета аргументов (МГУА) [5; 7; 

8]. Формальная модель влияния ФР друг 
на друга на примере двух ФР: х1 и х2, 

представлена на рисунке 2. В этой мо-
дели ФР модифицируют друг друга по-
средством ввода двух функций влияния 
f1(х1, х2)  и f2(х1, х2) [11]. Определив со-
гласно (1) новые информативные при-
знаки, вычисляем частные 

коэффициенты уверенности 1КУ   и 

2КУ   в риске заболевания класса  . В 
результате их агрегирования получаем 
частный риск КУ  по ФР x1 и x2. 

При реализации такого подхода воз-
никает ряд трудностей, связанных с вза-
имодействием функций влияния и част-
ных коэффициентов уверенности: это 
взаимодействие может приводить к из-
менению величины ФР или к модифика-
ции слабого классификатора, связанного 
с этим ФР. Учитывая, что ФР много, то 
необходимо модифицировать ФР с уче-
том всех остальных ФР, поэтому очень 
сложно определить соответствующие 
функции влияния, используя парадигмы 
машинного обучения (МО) [12; 13] или 
экспертного оценивания [14; 15]. 

 
Рис. 2. Схема взаимодействия двух факторов риска в иерархической системе  
             принятия решений  

Fig. 2. Scheme of interaction of two risk factors in a hierarchical decision-making system 

Как уже было написано выше, вто-
рой подход учета влияния коморбидно-
сти на МР предусматривает учет синер-
гии на основе учета выходов слабых 
классификаторов МР. При этом риск ко-
морбидных заболеваний описывается ма-
тематическими моделями (линейными 
или нелинейными), например, моделями 
многомерной линейной регрессии, в 

которых МР коморбидных заболеваний 
R1 и R2 входят в виде скалярных состав-
ляющих: 

       
       

1 1 1 1 3 1 2,

2 2 2 2 3 2 1,

T T

T T

R A X B X c R

R A X B X c R

 =  +  + 


=  +  + 
 
(4) 

где Х1 и Х2 – векторы специфических 
ФР для МР R1 и R2; Х3 – вектор общих 
ФР для МР R1 и R2; А1, А2, В1, В2 – 

КУωℓ 

 

f1(х1, х2) 

 

f2(х1, х2) 

Уверенность в ωℓ 

по наблюдениям  
х1|x2 

Уверенность в ωℓ 

по наблюдениям  
х2|x1 

 

А
гр

ег
ат

ор
 

КУ1ωℓ 

КУ2ωℓ 
 

x1 

x2 
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матрицы коэффициентов многомерной 
линейной модели рисков коморбидных 
заболеваний; с1 и с2 – коэффициенты, 
учитывающие взаимное влияние МР ко-
морбидных заболеваний. 

Учитывая, что в системе уравнений 
(4) независимыми являются коэффици-
енты при предикторах риска, т. е. А1, А2, 

В1, В2 и с1 и с2, система алгебраических 
уравнений (4) является нелинейной. Для 
описания методики ее решения запишем 
(4) в наиболее простом варианте, когда 
векторы ФР Х1, Х2, Х3 являются скаля-
рами: 

1 1 1 1 3 1 2,

2 2 2 2 3 2 1.

R a x b x c R

R a x b x c R

=  +  + 
 =  +  +         (5)

 

Осуществив переход в правых частях 
уравнений (5) к одной зависимой пере-
менной, получим 

1 2 1 1 2 1
1 1 2 3,

1 1 2 1 1 2 1 1 2

2 1 2 2 1 2
2 2 1 3.

1 1 2 1 1 2 1 1 2

a a c b b c
R x x x

с с с с с с
a a c b b c

R x x x
с с с с с с

 +  =  +  +  −  −  − 
  +  =  +  + 
 −  −  − 

 

(6) 

Таким образом, каждый объект (па-
циент) имеет две метки – R1 и R2. В ре-
зультате построения моделей, соответ-
ствующих системам уравнений (4), (5) и 
(6), необходимо определить коэффици-
енты при трех ФР, которые удовлетво-
ряли бы априорно выбранным показате-
лям качества этих моделей. Концепту-
альная модель классификатора пред-
ставлена ниже (рис. 3).  

 

Рис. 3. Концептуальная модель классификатора медицинского риска с учетом  
             синергетического эффекта на основе структуры сети Хопфилда 

Fig. 3. Conceptual model of a medical risk classifier taking into account the synergistic  
            effect based on the structure of the Hopfield network 
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Модель отвечает системе уравнений 
(5). Характерной особенностью этой мо-
дели является наличие задержек на один 
такт Z-1. Задержки управляются парафаз-
ным генератором, на входах которого 
присутствуют противофазные импульсы, 
управляющие записью данных с выхо-
дов классификатора рисков в регистры 
задержек. Формально модель рисунка 3 
можно рассматривать как одну нейрон-
ную сеть (НС) со структурой Хопфилда 
[16; 17] или как две НС с многосвязной 
структурой. И в том и в другом случае в 
структуре НС должна быть предусмот-
рена задержка на один такт и проведена 
проверка условия на устойчивость сети. 

Под устойчивостью НС здесь понима-
ется процесс обучения сети, в результате 
выполнения которого приращения пере-
менных на ее выходах по каждому при-
меру стремятся к нулю. На рисунке 4 по-
казан процесс изменения (динамика) по-
казателей риска R1 и R2 на выходе си-
нергетических классификаторов от 
эпохи к эпохе при устойчивой НС: 

11 1 1k k kR R R+ = − ; 12 2 2k k kR R R+ = − , 

где k = 0, 1, …, i-1 – номер эпохи обуче-
ния; i – число эпох обучения, определяе-
мое в блоке 6 согласно схеме алгоритма 
(рис. 5). 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2−

0.1−

0

0.1

0.2

0.3

R1 j

R2 j

j
 

Рис. 4. Эпюры динамики показателей риска на выходе синергетических  
             классификаторов от эпохи к эпохе  

Fig. 4. Diagrams of the dynamics of risk indicators at the output of synergetic classifiers  
             from epoch to epoch 

Для обучения НС сформируем обу-
чающую выборку пациентов с коморбид-
ными заболеваниями, при этом будем ко-
дировать наличие коморбидного заболе-
вания единицей, а его отсутствие – ну-
лем. В таком случае в выборке будут при-
сутствовать пациенты, относящиеся к 

четырем классам: 00, 01, 10 и 11. При 
этом к классу коморбидных пациентов 
относятся только пациенты с кодом 11, а 
пациенты с кодом 00 относятся к классу 
здоровых, т. е. не больных ни ВП, ни АГ. 
В таблице 1 представлена структура дан-
ных в обучающей выборке. 
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Рис. 5. Схема алгоритма синтеза синергетического классификатора 

Fig. 5. Scheme of the synergetic classifier synthesis algorithm 
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Таблица 1. Структура данных в обучающей выборке для синтеза синергетического классификатора 

Table 1. Data structure in the training set for the synthesis of a synergetic classifier 

№ п/п пациентов 
Переменные модели  классификатора 𝑋1 𝑋2 𝑋3 𝑅1 𝑅2 

1 *** *** *** 0 1 

2 *** *** *** 0 0 

3 *** *** *** 1 0 

… … … … … … 𝑛 *** *** *** 1 1 

… … … … … … 𝑁 *** *** *** 0 1 
 

После формирования таблицы 1 
приступаем к обучению классификато-
ров риска R1 и R2 (схема алгоритма на 
рис. 5), структура которых представлена 
на рисунке 6. Эти классификаторы 

назовем классификаторами нулевого 
уровня и обозначим их выходы как R10 и 
R20. Для их обучения необходимо из таб-
лицы 1 сформировать две таблицы экс-
периментальных данных (ТЭД).  

 
        а               б 

Рис. 6. Структурная схема синергетических классификаторов: а – для нулевого шага обучения; 
             б – для первого и последующих шагов обучения 

Fig. 6. Block diagram of synergetic classifiers: a – for the zero learning step;  
            б – for the first and subsequent learning steps 

Первая ТЭД предназначена для обу-
чения классификатора риска R1, а вторая 
ТЭД – для классификатора риска R2. В 
первую ТЭД входят пациенты с кодами 
риска 00 и 10, а во вторую ТЭД – 00 и 01. 
При этом из первой ТЭД исключаются 
столбцы Х2 и R2, а из второй ТЭД – 

столбцы Х1 и R1. 

После обучения классификаторов 
нулевого уровня, структура которых 
представлена на рисунке 6, а, переходим 
к обучению классификаторов первого 
уровня. Классификаторы первого уровня 

построены по схеме (рис. 3) и объеди-
нены в один классификатор. Его схема 
представлена на рисунке 6, б.  

В таблице 2 приведена структура 
данных для синергетических классифи-
каторов первого уровня. Такую же 
структуру данных имеют классифика-
торы всех последующих уровней, кото-
рые строятся по аналогичной схеме с 
учетом того, что для классификатора i-

го уровня на входы подаются риски, 
определенные классификатором i-1-го 
уровня. 

Классификатор 𝑅2 

Классификатор 𝑅1 
𝑋1 𝑋3 

𝑋2 𝑋3 

𝑅10 
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Таблица 2. Структура данных обучающей выборки для первого и последующих уровней 

Table 2. Structure of the training sample data for the first and subsequent levels 

№ п/п  
пациентов 

Переменные модели классификатора 𝑋1 𝑋2 𝑋3 𝑅1𝑖 𝑅2𝑖 𝑅1 𝑅2 

1 *** *** *** 0,2 0,8 0 1 

2 *** *** *** 0,1 0,25 0 0 

3 *** *** *** 0,85 0,2 1 0 

… … … … … … … … 𝑛 *** *** *** 0,85 0,85 1 1 

… … … … … … … … 𝑁 *** *** *** *** *** *** *** 
 

Для перехода к построению класси-
фикатора следующего уровня проверя-
ются показатели качества классифика-
ции классификатора текущего уровня, а 
также проверяется устойчивость модели 
классификатора по следующим форму-
лам: 

1

1
1 ( 1 2 )

1

s

s k k

k s

K R R
+

+
=

=  
 +  , (7) 

1

1
2 ( 1 2 )

1

s

s k k

k s

K R R
+

+
=

=  
 +  , (8) 

где s=0…i – 2; λ=0 при i = 2, λ = 1 при 

i = 3, λ = 2 при i ≥ 4. 

Показатели (7) и (8) определяются в 
блоке 10 алгоритма рисунка 5 и при не-
удовлетворительной устойчивости, т. е. 

когда критерий устойчивости превы-
шает пороговое значение, что показы-
вает наличие положительной обратной 
связи; лицо, принимающее решение 
(ЛПР) в блоках 15 и 17, может ослабить 
ее влияние. На рисунке 7 показаны 
эпюры динамики показателей устойчи-
вости модели классификатора от эпохи к 
эпохе. При удовлетворительной точно-
сти модели и при удовлетворении пока-
зателя критерия устойчивости процесс 
обучения НС с синергетическими кана-
лами заканчивается. 

Структурная схема ММК риска ВП, 
предназначенная для адаптивной БТС 
реабилитационного типа, учитывающая 
синергетический фактор, представлена 
ниже рисунке 8. 
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s  
Рис. 7. Эпюры динамики показателей устойчивости модели классификатора  
             от эпохи к эпохе 

Fig. 7. Diagrams of the dynamics of stability indicators of the classifier model  
            from epoch to epoch 
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Рис. 8. Структурная схема модели мультимодального классификатора риска ВП  

Fig. 8. Block diagram of the model of the multimodal risk classifier  
            for community-acquired pneumonia 

Среди ФР ВП выделяют более ста 
показателей. К наиболее значимым из 
них относят характер начала заболева-
ния, степень дыхательной недостаточно-
сти, показатели АД, индекс массы тела 
(ИМТ), показатели рентгенографиче-
ских исследований, показатели клиниче-
ского анализа крови, возраст [12]. Что 
же касается ФР АГ, то, согласно иссле-
дованиям, проведенным в [18], к основ-
ным значимым ФР АГ были отнесены: 
возраст, курение, показатели АД, стресс, 
уровень холестерина, ИМТ, наслед-
ственность, атеросклероз и другие хро-
нические заболевания.  

В связи с этим в пространстве ФР 
было выделено четыре сегмента. Они 
разделены на «неизменяемые» (эти ФР в 
процессе лечения или реабилитации 
остаются постоянными и не влияют на 

динамику риска заболевания) – сегменты 
1…3 – и оперативные, которые могут 
«мгновенно» реагировать на изменение 
функционального состояния (ФС) – сег-
мент четыре. В первый сегмент ФР 
включены физикальные ФР, во второй – 

ФР, определяемые посредством инстру-
ментальных и лабораторных исследова-
ний [19].  

Третий сегмент ФР ВП содержит 
предикторы риска сопутствующего за-
болевания, в качестве которого выбрана 
АГ. В сегменте четыре используются по-
казатели, «моментально» реагирующие 
на экзогенные или эндогенные воздей-
ствия: АД, частота пульса (ЧСС), ча-
стота дыхательных движений (ЧДД), эн-
додермальный ответ (ЭДО). Формирова-
тели дескрипторов на основе ЭДО рас-
смотрены в [20]. 
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Решения слабых классификато-
ров в ММК со структурой (рис. 8) агре-
гируются сильными классификаторами 
(strong classifiers) NET 5, NET 6, NET 7, 

которые могут быть построены на лю-
бой парадигме [12; 21]. Пример 

структуры агрегатора NET 5 показан 
ниже (рис. 9). Полагаем, что классифи-
каторы нижнего иерархического уровня 
NET 1, NET 2, NET 3 и NET 4 дифферен-
цируют риск ВП на три уровня: высокий, 
средний, низкий. 

 
Рис. 9. Структурная схема нейронной сети в качестве классификатора риска  
внебольничной пневмонии 

Fig. 9. Block diagram of a neural network as a risk classifier  
for community-acquired pneumonia 

Для оценки риска ВП формируют 
четыре сегмента ФР (рис. 8), определя-
ются соответствующие им дескрипторы, 
которые поступают на входы слабых 

классификаторов NET 1, NET 2, NET 3 и 
NET 4. Например, для формирования де-
скриптора для слабого классификатора 
по функции принадлежности (ФП) ФР 
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 – «возраст», которая представлена на 

рисунке 10, воспользуемся формулой 
Байеса: 

ВП 1
ВП 1

1

P (фон) P( ВП)
КУ ( )=

P( )

x
x

x


,     (9) 

где ВПP (фон)  – априорная вероятность 

ВП по популяции; 1P( ВП )x  – вероят-

ность того, что возраст больного ВП в по-
пуляции равен x1; 1P( )x  – гистограмма 

распределения возраста в популяции [13]. 

 
Рис. 10. Графики функций принадлежности по базовой переменой «возраст»  
               к классу ω1 – «ВП» для мужчин (1) и женщин (2) 

Fig. 10. Graphs of membership functions for the basic variable "age"  
              by class ω1 – "C-AP" for men (1) and women (2) 

Блочно-иерархическая структура 
классификаторов (рис. 9) синтезируется 
в два этапа (схема алгоритма на рис. 11). 

Сначала обучаются классифика-
торы NET 1…NET 4 по дескрипторам, 
определяемым, например, по формуле 
(9), а затем обучается NET 5. Структура 

ТЭД для обучения классификаторов 
NET 1…NET 4 (рис. 9) представлена в 
таблице 3 (формируется в блоке 1 – 

рис. 11). Последний столбец таблицы 3 

заполняется по результатам тестирова-
ния NET 1 и переносится в таблицу 4. 

Таблица 3. Структура данных для обучения нейронных сетей NET 1…NET 4 

Table 3. Data structure for training neural networks NET 1...NET 4 

NN 
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Рис. 11. Схема алгоритма синтеза мультимодального классификатора  
               риска внебольничной пневмонии  

Fig. 11. Scheme of the synthesis algorithm for a multimodal risk classifier  
              for community-acquired pneumonia 
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В таблице 4 представлена струк-
тура данных в обучающих и контроль-
ных выборках для обучения НС второго 

иерархического уровня (на рис. 9 это 
NET 5). 

Таблица 4. Структура данных для обучения нейронной сети NET 5 

Table 4. Data structure for training the NET 5 neural network 

NN 

образцов 

Выход  
NET 1 

Выход 

NET 2 

Выход 

NET 3 

Выход 

NET 4 
Цель 

1 NET 1-1
 

NET 2-1
 

NET 3-1 NET 4-1
 

0 

2 NET 1-2 NET 2-2 NET 3-2 NET 4-2 1 

. 

. 

. 

. 

. 

. 

. 

. 

. 

.  .  . 

.  .  . 

.  .  . 

. 

. 

. 

. 

. 

. 

L NET 1-L NET 2-L NET 3-L NET 4-L 1 

 

В блоках 2 и 3 выполняется обуче-
ние классификаторов NET 1…NET 4 по 
ТЭД со структурой таблицы 3. Послед-
ний столбец таблицы 3 заполняется по-
сле формирования контрольных выбо-
рок в блоке 4. По результатам их класси-
фикации NET 1…NET 4 формируют 
ТЭД для NET 5 (блоки 5, 6) со структу-
рой таблицы 4. В блоке 7 осуществля-
ется обучение классификатора NET 5. 

Агрегатор NET 6 (рис. 8), анало-
гично NET 5 агрегирует решения СК. 
Каждый СК, так же как и классифика-
торы NET 1…NET 4 на рис. 9, имеет три 
выхода, соответствующие трем классам 
риска ВП. Решения NET 5 и NET 6 агре-
гируются в NET 7 (рис. 8). Алгоритмы 
настройки NET 5, NET 6 и NET 7 анало-
гичны алгоритму рисунка 11.  

Для настройки НС использовался 
программный продукт Neurowork, разра-
ботанный в среде MATLAB на кафедре 
биомедицинской инженерии Юго-За-
падного государственного универси-
тета. Он включает в себя пять модулей, 
каждый из которых обеспечивает вы-
полнение определенного этапа построе-
ния ММК [14; 22]. В качестве примера 
на рисунках 12 и 13 представлены интер-
фейсные окна двух из этих модулей. Мо-
дуль GuiData работает с обучающими и 
контрольными датасетами, предназна-
ченными для обучения и валидизации 
ММК. Модуль GuiNet предназначен для 
обучения и тестирования НС, а также 
для классификации неизвестных образ-
цов.  
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Рис. 12. Графический интерфейс модуля GuiData 

Fig. 12. Graphical interface of the GuiData module 

 
Рис. 13. Графический интерфейс модуля GuiNet 

Fig. 13. Graphical interface of the GuiNet module 

Глобальные параметры НС зада-
ются в окне GuiNet (транспаранты ввода 
в центре окна). В локальных окнах в пра-
вой части интерфейсного окна выво-
дятся показатели качества классифика-
ции по каждому классу для обучающей 
и тестовой выборок. 

Результаты и их обсуждение 

Для оценки показателей качества 
классификации разработанных ММК ВП: 
диагностической чувствительности 

(ДЧ), диагностической специфичности 
(ДС) и диагностической эффективности 
(ДЭ) – была создана экспериментальная 
группа в количестве 400 пациентов. Экс-
периментальная группа формировалась 
по результатам ретроспективных исследо-
ваний. Больные в экспериментальной 
группе были разделены по риску ВП на 
три класса. По 30% больных были отне-
сены к классам «высокий риск» и «сред-
ний риск», у 40% пациентов был установ-
лен класс «низкий риск» ВП. При 
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стратификации групп на классы исходили 
из того, что в каждом классе должно быть 
не менее ста пациентов.  

Диагностические характеристики 
ММК определялись для эксперимен-
тальной и контрольной выборок. Для 
оценки влияния на диагностические по-
казатели ММК слабых классификаторов 
сопутствующих заболеваний, контроль-
ная выборка формировалась из 

пациентов с подтвержденным диагнозом 
АГ. Результаты классификации ММК 
ВП на обучающей выборке приведены в 
таблице 5 (в числителе). Результаты 
классификации риска ВП сравнивались 
с балльной шкалой PSI, на которой 
также были выделены три градации сте-
пени тяжести ВП (результаты приве-
дены в знаменателе).  

Таблица 5. Экспериментальные данные по классификации риска внебольничной пневмонии  
                    на обучающей выборке 

Table 5. Experimental data on the risk classification of community-acquired pneumonia on the training set 

Обследуемые Высокий риск Средний риск Низкий риск 

1

1 120n =  (высокий риск) 101/84 19/28 0/8 

2

2 120n =  (средний риск) 11/23 99/85 10/12 

3

3 160n =  (низкий риск) 5/16 25/28 130/116 

Всего 117/123 143/141 140/136 

 

Сравнение показателей качества 
классификации ММК при классифика-
ции АГ как с прототипом осуществля-
лось с известной шкалой риска ССЗ 
SCORE [6; 7]. Высокий риск АГ соответ-
ствовал риску по шкале SCORE более 
10%, а низкий – менее одного процента. 

Средний риск соответствовал участку 
шкалы SCORE между этими диапазо-
нами. Показатели качества классифика-
ции АГ для модели ММК (числитель) и 
шкалы SCORE знаменатель, используе-
мые в качестве аналога, представлены 
ниже (табл. 6). 

Таблица 6. Показатели качества классификации артериальной гипертензии на обучающей  
                    и контрольной выборках мультимодального классификатора и шкалы SCORE 

Table 6. Quality indicators for the classification of arterial hypertension on the training and control samples  
               of the multimodal classifier and the SCORE scale 

Класс 
Обучающая выборка Контрольная выборка 

ДЧ,% ДС,% ДЭ,% ДЧ,% ДС,% ДЭ,% 

1

1n  84/70 96/86 

82,5/71 

82/71 96/87 

87/73 
1

2n  82,5/71 80/80 84/70 90/81 

1

3n  81/72,5 92/90,2 84/73 95/92 
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Таким образом, модель ММК по 
всем показателям качества классификации 
на всех экспериментальных и контроль-
ных группах пациентов достигает вели-
чины не менее 0,8. Показатели качества 
классификации ММК по классификации 
риска АГ в среднем выше, чем у известной 
системы SCORE, на 11%, что позволяет ре-
комендовать их для использования в систе-
мах мониторинга и контроля эффективно-
сти терапии и реабилитации пациентов с 
кардиореспираторными заболеваниями.  

Выводы 

1. Разработан метод синтеза класси-
фикатора риска внебольничной пневмо-
нии с учетом коморбидности, отличаю-
щийся тем, что синергетический эффект 
на риск внебольничной пневмонии соче-
танного заболевания учитывается вво-
дом дополнительных (виртуальных) 
факторов риска, представленных нели-
нейной моделью реальных факторов 
риска, с последующим синтезом слабых 
классификаторов на их основе, позволя-
ющий построить мультимодальный 
классификатор риска внебольничной 
пневмонии, учитывать взаимное влия-
ние коморбидных заболеваний на сум-
марный риск кардиореспираторного за-
болевания.  

2. Для построения слабых классифи-
каторов, позволяющих учесть эффект 
взаимовлияния коморбидных заболева-
ний на их риски, предложено использо-
вать полносвязную нейронную сеть Хоп-
филда, отличающуюся многосвязной 

структурой и двумя задержками на один 
такт, управляемыми парафазным генера-
тором с противофазными выходами, 
обеспечивающими запись в регистры за-
держек рисков с выходов нейронной сети 
Хопфилда со сдвигами на один такт.  

3. Разработан алгоритм обучения 
слабого классификатора со структурой 
нейронной сети Хопфилда, позволяю-
щий обеспечить заданные показатели 

точности классификации при заданных 
показателях устойчивости нейронной 
сети. 

4. Предложен критерий устойчиво-
сти нейронной сети Хопфилда с много-
связной структурой, заключающийся в 
вычислении суммы приращений рисков 
на ее выходах на апертуре трех эпох обу-
чения и контроле выхода этого показа-
теля за пределы пороговой величины. 

5. Разработан мультимодальный 
классификатор риска внебольничной 
пневмонии, предназначенный для мони-
торинга функционального состояния па-
циента в процессе проведения терапев-
тических и реабилитационных проце-
дур, состоящий из трех макрослоев авто-
номных интеллектуальных агентов. 
Первый макрослой содержит три слабых 
классификатора риска внебольничной 
пневмонии. Для первого слабого класси-
фикатора формируются дескрипторы из 
данных физикального обследования. 
Второй слабый классификатор исполь-
зует дескрипторы, полученные по ре-
зультатам инструментальных и лабора-
торных исследований, первый из кото-
рых осуществляет анализ данных, полу-
ченных на основе физикальных исследо-
ваний, второй – на основе инструмен-
тальных и лабораторных исследований, 
а третий – анализирует факторы риска, 
изменяющиеся в процессе экзогенного 
воздействия. Также в первом макрослое 
сформирован слабый классификатор со-
путствующего заболевания (артериаль-
ной гипертензии) по факторам риска, 
совпадающим с факторами риска основ-
ного заболевания. Второй макрослой 
слабых классификаторов формируется 
синергетическими каналами, а третий 
макрослой агрегирует решения слабых 
классификаторов первых двух макро-
слоев. 

6. Проведены исследования показа-
телей качества классификации риска 
внебольничной пневмонии посредством 
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мультимодального классификатора на 
ретроспективных данных. При исполь-
зовании оптимальной конфигурации 
мультимодального классификатора все 
показатели качества классификации 

были не менее 0,8 и превысили показа-
тели качества шкал PSI и SCORE в од-
них и тех же контрольных группах в 
среднем на 11%. 
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